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Abstract

In this study we test the performance of some nonexperimental estimators of impacts applied to

an educational intervention—reduction in class size—where achievement test scores were the outcome.

We compare the nonexperimental estimates of the impacts to “true impact” estimates provided by a

random-assignment design used to assess the effects of that intervention. Our primary focus in this study

is on a nonexperimental estimator based on a complex procedure called propensity score matching.

Previous studies which tested nonexperimental estimators against experimental ones all had

employment or welfare use as the outcome variable. We tried to determine whether the conclusions from

those studies about the performance of nonexperimental estimators carried over into the education

domain.

Project Star is the source of data for the experimental estimates and the source for drawing

nonexperimental comparison groups used to make nonexperimental estimates. Project Star was an

experiment in Tennessee involving 79 schools in which students in kindergarten through third grade were

randomly assigned to small classes (the treatment group) or to regular-size classes (the control group).

The outcome variables from the data set were the math and reading achievement test scores.

We carried out the propensity-score-matching estimating procedure separately for each of 11

schools’ kindergartens and used it to derive nonexperimental estimates of the impact of smaller class

size. We also developed proper standard errors for the propensity-score-matched estimators by using

bootstrapping procedures. We found that in most cases, the propensity-score estimate of the impact

differed substantially from the “true impact” estimated by the experiment. We then attempted to assess

how close the nonexperimental estimates were to the experimental ones. We suggested several different

ways of attempting to assess “closeness.” Most of them led to the conclusion, in our view, that the

nonexperimental estimates were not very “close” and therefore were not reliable guides as to what the

“true impact” was.



We put greatest emphasis on looking at the question of “how close is close enough?” in terms of

a decision-maker trying to use the evaluation to determine whether to invest in wider application of the

intervention being assessed—in this case, reduction in class size. We illustrate this in terms of a rough

cost-benefit framework for small class size as applied to Project Star. We find that in 30 to 45 percent of

the 11 cases, the propensity-score-matching nonexperimental estimators would have led to the “wrong”

decision.



How Close Is Close Enough?
Testing Nonexperimental Estimates of Impact against Experimental Estimates

of Impact with Education Test Scores as Outcomes

INTRODUCTION

The Nature of This Study and Its Motivation

In this study we attempt to assess the effectiveness of using nonexperimental methods in

estimating the impact on test scores of a particular educational intervention. Our focus is on the methods

of impact assessment rather than on the question of whether the educational intervention was effective.

Though the findings here have potential bearing on the controversies surrounding the impact of this

particular type of educational intervention (reduced class size), we do not emphasize those points.

Two major considerations motivated us to undertake this study. First, four important studies

(Fraker and Maynard, 1987; LaLonde, 1986; Friedlander and Robins, 1995; and Dehejia and Wahba,

1999) have assessed the effectiveness of nonexperimental methods of impact assessment in a compelling

fashion, but these studies have focused solely on social interventions related to work and their impact on

the outcome variables of earnings, employment rates, and welfare utilization. We attempt to ascertain to

what degree the conclusions from those studies carry over to situations in which the estimates of impacts

are on other types of outcomes. Second, in recent years there has been a growing interest in the

effectiveness of one particular type of nonexperimental method used for assessing the impacts of

interventions on outcomes, namely, propensity score matching. We attempt to assess how well this

nonexperimental method performs with respect to the impact of an educational intervention (reduction in

class size) on standardized achievement test scores as outcome variables

The Basic Framework

The framework we used derives from Fraker and Maynard (1987) and LaLonde (1986).
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One starts with data drawn from a “true random-assignment” study of a particular intervention. A

group of individuals is randomly assigned to the intervention—the “treatment group” (or “treatments”)—

and a group of individuals is assigned not to take part in the intervention—the “control group”( or

“controls”). Estimates of what we will call the “true impact” are available by estimating the difference in

the outcome of interest between the treatments and the controls.

The control group is critical because it provides the counterfactual: what would have happened

to the treatments—and how it would have affected their outcome measures—had they not been given the

opportunity to experience the intervention.

The nonexperimental methods are assessed by constructing a “comparison group” (or

“comparisons”), which is substituted for the control group. The nonexperimental estimates of the impact

are obtained by estimating the difference in the outcome of interest between the treatments and the

comparisons. The key issue is how best to construct the comparison group and how reliable a

counterfactual it will provide.

The great virtue of this framework is that it provides a clear standard against which to judge the

reliability of the nonexperimental method in assessing impacts for the given sort of intervention for the

chosen outcomes; that clear standard is the “true impact” obtained from the random assignment.

Because we are interested in testing nonexperimental methods on educational outcomes, we use

Tennessee’s Project Star as the source of the “true random-assignment” data. We describe Project Star in

detail below. We use the treatment group data from a given school for the treatments and then construct

comparison groups in various nonexperimental ways with data taken out of the control groups in other

schools.
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Previous Research in This Genre

The first attempts to use the basic approach just outlined were carried out by Fraker and Maynard

(1987) and LaLonde (1986) using estimates based on the National Supported Work Demonstration, a

random-assignment experiment, as the experimental “true impact” estimates.

The National Supported Work Demonstration was carried out in 13 sites across the nation from

1975 to 1979. The intervention was to provide paid employment opportunities for up to 18 months to

members of four disadvantaged groups: ex-addicts, ex-criminal offenders, women on welfare (AFDC),

and teenage school dropouts. The outcomes examined were postprogram employment, earnings, and

utilization of welfare. The researchers used the data for the treatment group members (those randomly

assigned to participate in the employment program) and then constructed various comparison groups to

use in generating nonexperimental estimates of the impact of the employment opportunity on the

postprogram employment, earnings, and welfare outcomes. To obtain the nonexperimental comparison

groups the researchers used data drawn from outside the demonstration program (the Current Population

Survey in one case and the Panel Study of Income Dynamics in another). They tested a variety of

methods to draw comparison samples which in some sense “matched” those in the Supported Work

experimental groups. They also tried various types of “selection bias” corrections. As a generalization

one could say that the nonexperimental estimators did not come very close to the “true impact” estimates

in most cases.

The next effort using the basic framework was carried out by Friedlander and Robins (1995).

These researchers used data from several welfare-to-work demonstration programs carried out in various

sites during the 1980s. The outcomes measured were again employment, earnings, and welfare usage.

Several innovations were made in this study. First, rather than creating nonexperimental

comparison groups from external data sources, Friedlander and Robins used the data for the control

group outcomes drawn from the demonstrations themselves. For example, they used the treatment group
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from a demonstration in Baltimore with the control group from a demonstration in San Diego as the

comparison group. Second, because in most sites the sample was enrolled over an extended period of

time, they were able to use treatments enrolled in the early period with a comparison group from among

the controls enrolled later. Third, for one site there were even different “offices” within the city that

enrolled sample members, so they were able to construct a comparison group from the controls from one

office to be compared with a treatment group drawn from another office, both enrolled at about the same

time. They also tested different matching procedures and “selection bias” corrections.

The conclusions were quite similar to those of the previous study based on the Supported Work

data. In a very high percentage of the cases the nonexperimental estimates of impacts did not come very

close to the “true impact” estimates obtained from the direct experimental-control samples data drawn

from the same site by taking experimental outcomes from an early cohort.

The final study of relevance is the recent work by Dehejia and Wahba (1998, 1999). It is this

work that has given rise to the very great interest in the potential for using propensity score matching as a

means of obtaining better nonexperimental impact estimates. These authors return to the National

Supported Work Demonstration as a source of data for the “true experimental impacts” and the basic data

for the treatment group and their outcomes. Using a carefully selected subgroup of the Supported Work

sample for the treatment group members, they then construct comparison groups from the same two data

sets LaLonde used (the Current Population Survey and the Panel Study of Income Dynamics). The

propensity score method—which is quite elaborate, as will be described below—was used to focus

attention on the small subset of the comparison units comparable to the treated units, hence alleviating

the bias due to systematic differences between the treated and comparison units.

The Data Set: Project Star

The experimental data used in this paper is from Project Star, Tennessee’s large-scale class-size

experiment (for further discussion, see Word et al., 1990; Krueger, 1999, 2000; and Mosteller, 1995).
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From 1985 to 1989, researchers collected observational data including sex, age, race, and free-lunch

status from over 11,000 students (Word, 1990). The schools chosen for the experiment were broadly

distributed throughout Tennessee. Originally, the project included eight schools from nonmetropolitan

cities and large towns (for example, Manchester and Maryville), 38 schools from rural areas, and 17

inner-city and 16 suburban schools drawn from four metropolitan areas: Knoxville, Nashville, Memphis,

and Chattanooga. Beginning in 1985–86, the kindergarten teachers and students within Project Star

classes were randomly assigned within schools to either “small” (13–17 pupils), “regular” (22–25), or

“regular-with-aide” classes. New students who entered a Project Star school in 1986, 1987, 1988, or 1989

were randomly assigned to classes. Because each school had “the same kinds of students, curriculum,

principal, policy, schedule, expenditures, etc, for each class” and the randomization occurred within

school, theoretically, the estimated within-school effect of small classes should have been unbiased.

During the course of the project, however, there were several deviations from the original experimental

design—for example, after kindergarten the students in the regular and regular-with-aide classes were

randomly reassigned between regular and regular-with-aide classes, and a significant number of students

switched class types between grades. However, Krueger found that, after adjusting for these and other

problems, the main Project Star results were unaffected; in all four school types students in small classes

scored significantly higher on standardized tests than students in regular-size classes.

In this study, following Krueger’s example, test score is used as the measure of student

achievement and is the outcome variable. For all comparisons, test score is calculated as a percentile rank

of the combined raw Stanford Achievement reading and math scores within the entire sample distribution

for that grade.

The Project Star data set provides measures of a number of student, teacher, and school

characteristics. The following are the variables available to use as measures prior to random assignment:

student sex, student race, student free-lunch status, teacher race, teacher education, teacher career ladder,
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teacher experience, school type, and school system ID. In addition, the following variables measured

contemporaneously can be considered exogenous: student age, assignment to small class size.

After presenting the results, we will return to review the strengths and weakness of the Project

Star data with respect to their use to assess, as we do here, performance of nonexperimental methods.

EXPLORING PROPENSITY SCORE MATCHING FOR NONEXPERIMENTAL IMPACT
ESTIMATES

Propensity Score Matching

We begin with the nonexperimental method that uses propensity score matching as the method

for constructing the comparison group. One might have chosen to present this complicated method after

presenting results with simpler and older methods. However, we lead off with this method because it is

our perception that there is tremendous current interest in the research and policymaking communities

about the efficacy of this nonexperimental method.

For the propensity score matching, we restricted ourselves to the data for kindergartners. There

were two reasons for this. First, these data are not subject to complications that arose in later grades due

to sample attrition, some switching in class types, and entry of new sample at a postkindergarten grade.

Second, the complications of implementation of the full propensity score matching and subsequent

analysis mean that running even a single regression example took 3 to 5 days of continuous computer run

time. Therefore doing it for all the grades and different sample stratifications would have been

inordinately time consuming.

We began by selecting kindergarten classes from the 11 schools that had over 100 kindergartners.

Using both treatments and controls from these classes, we estimated the “true impact” for each of the 11

classes as the mean difference in test score percentile and obtained the standard errors to test for the
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statistical significance of that impact estimate. This is the standard against which we judged the efficacy

estimates of impact obtained from the propensity score matching.

We next constructed estimates of impact separately for each of the 11 schools. To construct the

comparison group we used as an initial pool all the data for all the control group students in kindergarten

for all the schools in the sample except for the one school being tested. For example, call the school

being tested X, then the comparison pool is all the students in kindergarten control groups in non-X

schools. The propensity-score-matching procedures are then used to select from among this pool those

students who are most closely matched to the treatment students in school X.

To do the actual propensity score matching, we followed as closely as we could the procedures

prescribed in Dehejia and Wahba. Below is a brief description of our propensity-score-matching

procedures—a somewhat fuller description is provided in Appendix A.

A sample is made by combining the treatments from the selected school with all of the pool of

controls from other schools. Using a dummy variable equal to 1 if a treatment and 0 otherwise as a

dependent variable, we run a logit regression with all of the characteristics (described above) of the

students, the teachers, and the school types as independent variables. The coefficients from that logit

regression are then used to generate a propensity score for each observation in both the treatment group

and pool of controls from other schools, i.e., the predicted probability of being in the treatment group

based on observed characteristics.

Next, the distribution of propensity scores, ranked from highest to lowest, is divided into a series

of “bins,” and a test is performed to determine whether within each bin the mean propensity score value

for the treatment group members is significantly different from the mean propensity score for those from

the control group pool. If there are significant differences, the boundaries of the bins are shifted until

within each bin there is “balance” between treatments and those from the pool of controls. Once

“balance” is achieved, for each bin, a test is performed to determine whether within each bin all the
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1Carrying out the bootstrapping procedure when the estimator involves propensity score matching is an
extremely computer-intensive process. Our bootstrapping to produce standard errors with 500 repetitions took 3 to 5
days of continuous run time for just a single school.

observed characteristics are jointly insignificantly different between treatment group members and those

from the pool of controls. If there remain significant difference in covariates, one goes back to the logit

regression stage and changes some of the variables, e.g., adding higher-order terms in the variables or

cross products, and redoes the whole procedure.

Once “balance” has been achieved within bins according to both tests, one proceeds to carry out

the matching on propensity scores. The match is made by taking for each treatment group member the

observation from the pool of controls which is the “nearest neighbor” in terms of propensity score. The

result of this matching is a constructed comparison group made up of the selected observations from the

pool of controls.

Now one is in a position to make nonexperimental estimates of the impact on test scores of being

in a small class—the estimated difference in mean test percentile between the kindergarten treatment

group (in small classes) in the selected school and the comparison group of propensity-score-matched

kindergarten students (not in small classes) drawn from all the other schools. This is the nonexperimental

estimate of the impact of being in a small class on the test scores of kindergartners.

We added two further steps. First, to obtain appropriate standard errors for the nonexperimental

estimate of impact, we performed bootstrapping 500 times on the matching algorithm.1 Second, given our

framework for assessing nonexperimental estimates by comparing them to the “true impact” estimate

obtained from comparing the randomly assigned treatments and controls within the same school, we

wanted to test whether the difference between the nonexperimentally estimated impact and the “true

experimentally estimated impact” was statistically significant. We performed this test for each round of
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2In doing the test in each round we used the standard error calculated in the normal way for that round. We
recognize that these are biased estimates of the actual standard errors for this estimator—which is why we carried out
the bootstrapping.

the bootstrap, so we are able to report the relative percentage of the time that there was a statistically

significant difference between the nonexperimental estimate and the experimental estimate.2

The regression run to generate the estimated impact of being in smaller classes was the same for

the estimate based on the true experimental sample and for the estimate based on the nonexperimental

sample used. The dependent variable in the regression is the ranked test score, as defined earlier. The

independent variables include the demographic characteristics of the sample member prior to random

assignment (sex, free-lunch status, and race), a dummy variable equal to 1 if the sample member is in the

small-class-size group and 0 if the member is in the comparison (nonexperimental) or control

(experimental) group. Table 1 provides a summary of the propensity score results.

Most readers will not be familiar with the forms in which many of the results are presented in

this table. Each row represents the results for one of the 11 schools. We take the first row, which is

school number 7, and walk across the table, explaining each column entry.

Column 1, labeled School ID, gives an identification number for the individual school, school 7.

This is the school for which the estimates reported in the rest of the row apply.

Column 2, labeled Small Exp, gives the estimate of the effect on percentile test scores of small

class size obtained using the random-assignment experimental and control sample, namely, mean test

score of the treatments in small classes was 5.16 percentile points less than the mean test scores of those

not in small classes in school 7.

Column 3, labeled P Small Exp, gives the probability that an estimate of difference in mean test

score due to class size reported in column 2 could have been obtained from a sample of this size if the

true difference in mean test scores between those in small classes and those not in small classes was 0. In

this case, there was a 37 percent probability, so by the usual statistical standards, a 5 percent chance, we



TABLE 1
Project Star: Propensity Score Matching

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

School ID Small Exp
P Small

Exp
St. Error

Exp
Small

Nonexp
P Small
Nonex

St. Error
Non

P Diff -
Exp/Nonex

St. Error
Boot Sig Not sig

7 -5.160 0.371 5.739 20.912 0.013 8.139 0.003 10.224 193 307

9 13.039 0.005 4.551 30.687 0.000 5.766 0.000 7.798 178 322

16 24.191 0.000 4.247 9.890 0.090 5.750 0.000 6.005 500 0

22 33.090 0.000 5.756 36.115 0.000 7.337 0.843 9.819 387 113

27 -10.476 0.063 5.588 35.157 0.000 6.494 0.000 8.241 331 169

28 1.332 0.791 5.012 16.810 0.013 6.624 0.283 6.340 117 383

32 10.621 0.022 4.570 15.781 0.043 7.613 0.384 8.178 484 16

33 9.611 0.028 4.295 -6.797 0.224 5.524 0.001 7.593 479 21

51 14.731 0.002 4.568 24.450 0.000 5.680 0.026 8.234 229 271

63 16.153 0.003 5.406 30.334 0.000 6.029 0.002 8.378 182 318

72 19.264 0.003 6.391 45.645 0.000 8.174 0.005 9.413 105 395
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would accept (not reject) a hypothesis that in fact the difference in mean test scores between small and

large classes was 0.

Column 4, labeled St. Error Exp, gives the standard error of the estimate of the difference in

mean test scores between large and small. This is the standard error used in conjunction with the mean

test score difference in column 2 to calculate the probability given in column 3.

Column 5, labeled Small Nonexp, provides the estimate of the difference in mean test scores

between those randomly assigned to be in small classes in the given school, here school 7, and the mean

test scores of those in the comparison group who were selected by propensity score matching from the

pool of students not in small classes; it gives the nonexperimental estimate of the effect of being in a

small class in this school. In this case the pool of nonsmall-class students is made up of all the students

from the control groups in all the schools except school 7. Using the propensity-score-matching

comparison group, the nonexperimental impact estimate for school 7 is that those in small classes had

mean test scores 20.9 percentile points above those in nonsmall classes.

Column 6, labeled P Small Nonex, gives the probability that an estimate of difference in mean

test score due to class size reported in column 5 could have been obtained from a sample of this size if

the true difference in mean test scores between those in small classes and those not in small classes was

0. So this is similar to column 3 but in this case applies to the nonexperimental estimate. Here the

probability is 1.3 percent and thus well below the usual statistical cutoff of 5 percent, so we would reject

the hypothesis that there was zero difference in mean test scores between those in small classes and those

not in small classes.

Column 7, labeled St. Error Non, gives the standard error of the estimate of the difference in

mean test scores between large and small. This is the standard error used in conjunction with the mean

test score difference in column 5 to calculate the probability given in column 6.
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Column 8, labeled P Diff-Exp/Nonex, gives the probability that a difference between the

estimate of the impact of small class on test scores obtained from the experimental results given in

column 2 and the estimate of the impact of small class on test scores obtained from the nonexperimental

results given in column 5 could have been obtained if there was truly zero difference in the estimates of

impact obtained from the two different procedures. In this case, the P level is 0.3 percent, well below the

standard cutoff of 5 percent, and indeed below a 1 percent cutoff. We conclude that for this school, the

experimental estimate of impact and the nonexperimental estimate of impact are indeed statistically

significantly different.

Column 9, labeled St. Error Boot, is the estimate of the standard error for the nonexperimental

estimate of the impact of small class size on test scores as obtained by the bootstrapping procedure

estimated with 500 repetitions of the bootstrap. In this case, the bootstrap standard error is considerably

larger than the standard error in column 7, which was calculated in the usual way from the

nonexperimental sample.

Column 10, labeled Sig, gives the number of times in the 500 bootstrap repetitions that the

difference in the experimental impact and the nonexperimental impact was statistically significantly

different from 0. In this case, 193 of the 500 repetitions yielded nonexperimental estimates of impact that

were significantly different from the experimental impact estimates.

Column 11, labeled Not Sig, gives the number of times in the 500 bootstrap repetitions that the

difference in the experimental impact and the nonexperimental impact was not statistically significantly

different from 0. In this case, 307 of the 500 repetitions yielded nonexperimental estimates of impact that

were not significantly different from the experimental impact estimates.

With this explanation of the table entries in hand, we can give our overview of the results.

How well do the propensity-score-matched estimates of the impact of class size approximate the

experimental impact estimates? Our general conclusion would be that across this set of 11 schools tested,



13

they don’t do very well, by which we mean the that nonexperimental estimates of impact are not close to

the experimental estimates of impact. Now the question “how close is close enough?” requires a more

careful answer than the gross generalization just stated. We suggest several ways of addressing this

question by discussing various aspects of the data provided in Table 1.

One very important and stringent measure of closeness is whether there are many cases in which

the nonexperimental impact estimates are opposite in sign from the experimental impact estimates and

both sets of impact estimates are statistically significantly different from 0, e.g., the experimental

estimates said that the mean test scores of those in smaller classes were significantly negative while the

nonexperimental estimates indicated they were significantly positive. There is only one case in these 11

which comes close to this situation. For school 27, the experimental impact estimate is !10.5 and

significant at the 6 percent level, just above the usual significance cutoff of 5 percent. The

nonexperimental impact estimate is 35.2 and significant at better than the 1 percent level. In other cases

(school 7 and school 33), the impact estimates are of opposite sign, but one or the other of them fails the

test for being significantly different from 0.

If we weaken the stringency of the criterion a bit, we can consider cases in which the

experimental impact estimates were significantly different from 0 but the nonexperimental estimates

were not (school 16 and school 33), or vice versa (schools 7, 16, and 28).

Another, perhaps better, way of assessing the differences in the impact estimates is to look at

column 8, which presents a test for whether the impact estimate from the nonexperimental procedure is

significantly different from the impact estimate from the experimental procedure. For eight of the 11

schools, the two impact estimates were statistically significantly different from each other.

Still another way to look at this issue is through inspection of column 10 or column 11. We are

less confident that this is a reasonable way to assess the performance of the nonexperimental estimators,

but comment on it anyway. If we take the entries in column 10 and divide them by 500, we get the
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3We do not discuss average or median values of these percentages of significant differences between the
two estimates as we don’t know what the distribution really represents. There are notable differences among the
schools in how well the nonexperimental estimates approximate the experimental ones, but we have not tried to
search systematically for what features of the schools might explain such differences.

percentage of the bootstrap repetitions in which the nonexperimental estimate of impact was found to be

significantly different from the experimental estimate of the impact. These percentages range from a low

of 21 percent for school 72 to a high of 100 percent for school 16; at best only one-fifth of the repetitions

for a given school yield statistically significant differences between nonexperimental and experimental

impact estimates, and at worst all of the repetitions yield statistically significant differences between the

two types of impact estimates.3

These are some of the various ways of looking at Table 1 that led us to our generalization that

with these data the propensity-score-matching nonexperimental estimates do not do very well in

approximating the experimental estimates of the impacts of small class size on test score performance.

How Close Is Close Enough for Decision-Making?

Here we take a slightly different approach to the question of closeness of the nonexperimental

and experimental estimates.

When we first began considering this issue, we thought that a criterion might be based on the

percentage difference in the point estimates of the impact. For example, for school 9 the nonexperimental

estimate of the impact is 135 percent larger than the experimental impact. But for school 22 the

nonexperimental impact estimate is 9 percent larger. Indeed, all but two of the nonexperimental estimates

are more than 50 percent different from the experimental impact estimates.

Whereas in this case the percentage difference in impact estimates seems to indicate quite

conclusively that the nonexperimental estimates are not generally close to the experimental ones, in some

cases such a percentage difference criterion might be misleading. The criterion which seems to us the

most definitive is whether distance between the nonexperimental and the experimental impact estimates
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would have been sufficient to cause an observer to make a different decision from one based on the true

experimental results. For example, suppose that the experimental impact estimate had been .02 and the

nonexperimental impact estimate had been .04, a 100 percent difference in impact estimate. But further

suppose that the decision about whether to take an action, e.g., invest in the type of activity which the

treatment intervention represents, would have been a yes if the difference between the treatments and

comparisons had been .05 or greater and a no if the impact estimate had been less than .05. Then even

though the nonexperimental estimate was 100 percent larger than the experimental estimate, one would

still have decided not to invest in this type of intervention whether one had the true experimental estimate

or the nonexperimental estimate.

This perspective suggests that in order to decide how close nonexperimental estimates have to be

to the experimental ones to be considered “close enough,” the point beyond which a decision of “no”

would change to a decision of “yes” depends on the specific decision context. Let’s call this approach to

“close enough” the “wrong decision” criterion.

We can give a rough example of applying this sort of criterion in the case from which these data

were drawn, the Project Star experiment with class-size reduction in Tennessee. In a couple of his articles

presenting aspects of his research using Project Star data, Krueger (1999, 2000) has developed some

rough benefit-cost calculations related to reduction in class size. In Appendix B we sketch in a few

elements of his calculations which provide the background for the summary measures derived from his

calculations that we use to illustrate our “close enough.” The benefits Krueger focuses on are increases in

future earnings that could be associated with test score gains. He carefully develops estimates—based on

other literature—of what increase in future earnings might be associated with a gain in test scores in the

early years of elementary school. With appropriate discounting to present values, and other adjustments,

he uses these values as estimates of benefits and then compares them to the estimated cost of reducing

class size from 22 to 15, taken from the experience in Project Star and appropriately adjusted.
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4Actually, Krueger gives several different critical values which vary with different combinations of key
assumptions, but from among these we chose the 0.2 of a standard deviation for the purpose of our illustration.

For our purposes, what is most interesting is the way he uses these benefit-cost calculations to

answer a slightly different question: How big an effect on test scores due to reduction of class size from

22 to 15 would have been necessary to just justify the expenditures it took to reduce the class size by that

much? He states the answer in terms of “effect size,” that is the impact divided by the estimated standard

deviation of the impact. This is a measure that is increasingly used to compare across outcomes that are

measured in somewhat different metrics. His answer is that an effect size of 0.2 of a standard deviation of

tests scores would have been just large enough to generate estimated future earnings gains sufficient to

justify the costs.4 Krueger indicates that the estimated effect for kindergarten was a 5.37 percentile

increase in achievement test scores due to smaller class size and that this was equivalent to 0.2 of a

standard deviation in test scores. Therefore we use 5.4 percentile points as the critical value for a

decision of whether the reduction in class size from 22 to 15 would have been cost-effective.

In Table 2 we use the results from Table 1 to apply the cost-effectiveness criterion to determine

the extent to which the nonexperimental estimates might have led to the wrong decision. To create the

entries in this table, we look at the Table 1 entry for a given school. If the impact estimate is greater than

5.4 percentile points and statistically significantly different from 0, we enter a Yes, indicating the impact

estimate would have led to a conclusion that reducing class size from 22 to 15 was cost-effective. If the

impact estimate is less than 5.4 or statistically not significantly different from 0, we enter a No to indicate

a conclusion that the class-size reduction was not cost-effective. Column 1 is the school ID, column 2

gives the conclusion on the basis of the experimental impact estimate, column 3 gives the conclusion on

the basis of the nonexperimental impact estimate, and column 4 contains an x if the nonexperimental

estimate would have led to a “wrong” cost-effectiveness conclusion, i.e., a different conclusion from the

experimental impact conclusion about cost-effectiveness.
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TABLE 2
Cost-Effectiveness Decisions for Project Star Based on 5.4 Percentile Impact Critical Criterion

[1] [2] [3] [4]

School ID
Experimental

Estimate
Nonexperimental

Estimate Wrong Decision

7 No Yes x

9 Yes Yes

16 Yes Maybe ?

22 Yes Yes

27 No Yes x

28 No Yes x

32 Yes Yes

33 Yes No x

51 Yes Yes

63 Yes Yes

72 Yes Yes
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It is easy to see in Table 2 that the nonexperimental estimate would have led to the wrong

conclusion in four of the 11 cases. For a fifth case, school 16, we entered a Maybe in Column 4 because,

as shown in Table 1, for that school the nonexperimental estimate was significantly different from 0 at

only the 9 percent level, whereas the usual significance criterion is 5 percent. Even though the

nonexperimental point estimate of impact was greater than 5.4 percentile points, strict use of the 5

percent significance criterion would have led to the conclusion that the reduction in class size was not

cost-effective. On the other hand, analysts sometimes use a 10 percent significance criterion, so it could

be argued that they might have used that level to conclude the program was cost-effective—thus the

Maybe entry for this school.

Overall, then, in four or five of the 11 cases considered, the nonexperimental estimates would

have led to the wrong cost-effectiveness criterion. Anyone can decide what to make of this indication of

the likelihood that the nonexperimental estimates are “close enough.” Our own conclusion is that it

would be too risky to rely on the propensity-score-matching estimates in this situation.

Would the “Wrong Decision Criterion” Be Operationally Useful in Deciding on Whether to Use a
Nonexperimental Method, and If So, Which One?

The interest in the performance of nonexperimental methods arises in the context of making

decisions about the approach to take in designing evaluations of the impact of a given policy or program

intervention. It seems natural to ask: Would the “wrong decision criterion” be operationally useful in

deciding on whether to use a nonexperimental method, and if so, which one? In other words, could this

“wrong decision” approach be operationally applied?

Two elements are required to operationalize the “wrong decision criterion.” First, one needs a

value for the critical impact threshold, an impact magnitude that would determine that the intervention

was justified on benefit-cost, or similar, grounds. In practice, in carefully designed impact evaluations,

experimental or nonexperimental, we often develop such a “critical impact” value as part of developing
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our estimates of the required sample size for the study; we want the sample size to be large enough to

assure the statistical power to have a high probability of detecting an impact of that magnitude or greater

if it actually occurs.

The second element of the “wrong decision criterion” is a reasonable guess as to how far off the

“true impact” (the bias of the nonexperimental estimate), and in which direction, the nonexperimental

impact might be in a given case. Looking across our 11 cases, we see tremendous variation in “how

close” this particular nonexperimental estimator was to the experimental. Unless we accumulate enough

studies similar to this one so that we have reasonable grounds for judging how far off the

nonexperimental estimates are likely to be in a given situation, we cannot operationally implement this

“wrong decision criterion.”

Weaknesses of This Study as an Assessment of Propensity Score Matching and Their Relevance to an
Evaluation Design Decision Context.

We want to explicitly recognize the limitations of these data as a means of assessing the

performance of propensity score matching.

On the positive side, as noted above, the Project Star data provide an unusual opportunity

because they come from a “true random-assignment” intervention and they represent not just one

experiment but as many experiments as there were schools (79). In addition, the sample sizes are quite

large even at the individual school level. All the variables are defined and measured the same way across

all the sites. Thus we were able to use treatment groups from one school, or set of schools, and then the

controls from another set of schools as the pool from which a nonexperimental comparison group could

be constructed.

For the purposes of testing propensity score matching, and some other nonexperimental methods,

these data have some weaknesses. For any matching method, the larger the number of covariates the

better. In the Project Star data there are only a limited number of covariates that can be used in the
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matching process. For our matching model we could use student age, student sex, student race, student

free-lunch status, teacher race, teacher education, teacher career ladder, teacher experience, school type

(rural, urban, inner-city, suburb), and school system ID. The Project Star data have no preintervention

measure for the outcome variable, i.e., there are no achievement tests scores for students before they

were randomly assigned to small classes or to regular-size classes. For many nonexperimental estimators,

such preintervention measures can improve the matching and can be used for pre-post estimates (or

difference in differences) of impact. Finally, many researchers who attempt to use nonexperimental

estimators of impacts argue that it is important that the pool from which comparison group members will

be drawn be located as close to the site where the treatment group members are located—e.g., for

earnings and employment outcome studies, that comparisons and treatments be from the same labor

market. Some have argued that the propensity score match pool of potential comparisons be from the

same school. This is not feasible in this study because we are using control group members as the

potential comparison group pool, and if we took comparison group members from the controls in the

same school we would essentially be replicating the experiment.

Recognizing these limitations, we argue, however, that in many situations in which decisions are

to be made about the design of an impact evaluation, the decision-makers would face similar limitations

to the data they have or could generate. For example, if one were testing an intervention in kindergarten,

it would be difficult to get preintervention measures on test scores. Even for older youth,

nonexperimental estimators that depend on several periods of preintervention measurement on the

outcome variable in order to estimate individual trajectories in the outcome change over time and then try

to match on trajectories may find these methods far less powerful for youth than they are for older

persons where trajectories are more stable. Finally, while it is legitimate to argue that one probably will

get a better match when the members of the potential comparison pool are located close to the treatment

group members, e.g., in the same school, if they are really that near then it seems it should be feasible to
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5Results using the other two comparison group pools yielded qualitatively the same results.

do a random-assignment design and obtain the far greater reliability of the experimental design estimate

of the impact.

COMPARING PROPENSITY-SCORE-MATCHING PERFORMANCE WITH THAT OF A SIMPLER
NONEXPERIMENTAL METHOD

We actually began this project by testing comparison groups drawn from the pool of control

group members and using a simpler nonexperimental estimator that uses only multiple regression with

covariates included to attempt to deal with bias. We will refer to this as the multiple-regression-

correction estimator. We will present some of these results later in the paper. Here we use the multiple-

regression-correction procedure for the kindergartners in the same 11 schools for which we estimated

propensity-score-matched impact estimates. We then make a rough comparison of how well the multiple-

regression-correction impact estimates compare with the propensity-score-matched impact estimates.

Using the treatment group for each of the 11 school kindergartens reported in Table 1, we created

the comparison group from the kindergarten control group members for all the schools except the one

whose treatment group members we were using, i.e., the same pool from which we had drawn

comparisons using the propensity scores. We drew the comparison group from this pool in three different

ways. First, we simply used everyone in the pool as a member of the comparison group (about 3,900

cases). We refer to this in Table 3 as Type 1. Second we took a random sample from that pool of size

approximately equal to the size of the treatment group for that school (ranging from about 100 to 135).

Third, we used only school of the same type as the treatment school for the comparison pool, e.g., when

the treatment school was rural, all other rural school controls made up the comparison group (comparison

sample ranged from 290 to 1,830).5
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6We are just using the crude test of how close the point estimates are. We could do more with this by taking
into account standard errors and repeating some of the alternative ways of judging closeness but decided not to
present all of that analysis.

For each type of comparison sample drawn, we ran the nonexperimental regressions using the

comparison group selected and a dummy for small class and the covariates as right-hand-side variables.

Thus, we obtained a simpler nonexperimental impact estimate for the same 11 kindergarten classes.

We will not reproduce all the estimates for the three different methods of drawing the

comparison group but simply select the first—all the controls from schools other than the one we are

using for treatments—and then compare them to the propensity-score-matching estimates and the true

experimental estimates for that school. Table 3 provides this comparison.

The first column of Table 3 gives the school ID. The second column reports the nonexperimental

estimate of the class-size effect using a comparison group of all the controls in kindergartens except the

one for the given school. The third column gives the propensity-score-matching estimate of the class-size

effect for that school. The fourth column gives the experimental estimate of the class-size effect for that

school. The fifth column simply indicates which nonexperimental estimate was closest to the

experimental estimate.6 We call the regression with covariates Type 1 to indicate this was the type in

which we used the entire comparison pool.

This crude test shows that the propensity-score-matching estimate performed better than the

simpler multiple regression estimate only for two of the 11 school estimates. It is not clear to us why the

propensity score estimates should have been worse, since the propensity score comparisons are drawn

from the pool that makes up Type 1 for the simple regressions, but that is what we find at this stage, so

we would not put great emphasis on this result. We felt, however, that we wanted to see if the more

complex propensity-score-matching procedures clearly performed better than the simpler

nonexperimental regression-adjusted estimates, as some would argue it should. We do not see any better

performance by the propensity-score-matched estimators on the basis of these data.
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TABLE 3
Simple Regression versus Propensity Score Matching

Multiple-Reg Type 1 Pscore Experimental Closest

School ID Small Nonexp Small Nonexp Small Exp

7 9.639 20.912 -5.160 Type 1

9 15.300 30.687 13.039 Type 1

16 1.861 9.890 24.091 Pscore

22 35.171 36.115 33.090 Type 1

27 20.363 35.157 -10.476 Type 1

28 0.200 16.810 1.332 Type1

32 -8.616 15.781 10.621 Pscore

33 -5.602 -6.797 9.611 Type 1

51 16.510 24.450 14.731 Type 1

63 24.320 30.334 16.153 Type1

72 27.774 45.645 19.264 Type 1
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MULTIPLE-REGRESSION-CORRECTION ESTIMATORS WITH COVARIATES TO DEAL WITH
BIAS IN COMPARISON GROUP ESTIMATES OF IMPACT

In this section we describe the much larger set of results we obtained using the multiple

regression including the covariates for correction for bias, multiple-regression-correction

nonexperimental estimators. We produced results using this type of nonexperimental estimator for a

much wider set of cases. We estimate them separately for kindergarten through third grade and for

different groupings according to school type and district type.

The first set of 28 nonexperimental control groups helped us to compare estimates made using

within school comparison groups, i.e, experimental estimates (children in small classes in school X to

children in regular classes in school X), to estimates made by comparing across schools (children in

small classes in school X to children in regular classes in school Y). Schools chosen were of the same

demographic type: inner-city, suburban, rural, or urban. For example, to construct the first

nonexperimental control group of inner-city kindergartners, the total sample of inner-city kindergarten

students was divided into two cohorts, by student ID number (cohort 1 included students in A, B, C, D, E,

F, G schools, whereas cohort 2 included students in T, U, V, W, X, Y, Z schools).

To obtain the “true” experimental estimate of the effect on inner-city kindergartners of being in a

small class, only children in the first group or first half of all inner-city kindergartners (including those in

the small, regular, and regular-with-aide classes) were used. For the experimental estimate, test scores of

children in small classes were compared with test scores of other children within their schools who were

in regular and regular-with-aide classes (children in small classes in A, B, C, D, E, F, G were compared

with children in regular and regular-with-aide classes in A, B, C, D, E, F, G). To obtain the

nonexperimental, constructed estimate, however, the children in the small classes from the first cohort

were compared with the children in regular and regular-with-aide classes in the second cohort (children
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in small classes in A, B, C, D, E, F, G were compared with children in regular and regular-with-aide

classes in T, U, V, W, X, Y, Z).

For each demographic type (inner-city, suburban, rural, or urban), this process was repeated for

kindergarten, first grade, second grade, third grade, cumulative first grade (cumulative—defined as

excluding those children who joined Project Star in that particular year of analysis), cumulative second

grade, and cumulative third grade.

The second type of comparison group, involving 21 pairs of regressions, compared estimates

obtained within and across districts. The district was the comparison unit. A district type was determined

by the percentage of students of a given school type within that district. For example, if more than 50

percent of the students in a district attended rural schools, the district was classified as rural. By this

definition, there were seven urban systems, one inner-city system, five suburban systems, and 29 rural

systems.

Because the majority of schools in Tennessee are rural, this analysis focused on rural districts.

For the experimental comparison across district type, program and control groups were constructed for

rural districts. For the experimental estimate, the test scores of students in small classes were compared

with students in regular classes in rural districts (i.e., children in small classes in rural districts A, B, C, D

were compared with children in regular classes in those same districts). For the nonexperimental control

groups, however, groups defined from other district types (either inner-city, suburban, or urban) were

used. For example, for the first nonexperimental control group, children in regular classes in inner-city

kindergartens were used (children in small classes in rural districts A, B, C, D were compared with

children in regular classes in inner-city districts O, P, Q, R) Again, these evaluations were repeated for

kindergarten, first grade, second grade, third grade, cumulative first grade (see definition above),

cumulative second grade, and cumulative third grade.
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7Work by Krueger and Whitmore (1999) inspired this model specification. Their results suggest that the
year of entry into Project Star greatly influences the significance of the effect of small classes on student
achievement.

THE ECONOMETRIC SPECIFICATION

For all the comparison groups, a linear regression model was used to produce the experimental

and nonexperimental estimates of program effect. The same specification was used for each method.

The dependant variable in the regression is the ranked test score, as defined earlier. The

independent variables include the demographic characteristics of the sample member prior to random

assignment (sex, free-lunch status, and race), a dummy variable equal to 1 if the sample member is in the

small-class-size group and 0 if the member is in the comparison (nonexperimental) or control

(experimental) group, along with four fixed-effects dummy variables that reflect the year in which the

student entered Project Star.7

The estimate of the effect of being in small classes is the coefficient on the small class dummy.

Given that the randomization within Project Star has been implemented correctly, the experimental

estimate of the effect of small class size should be unbiased. When the control groups have been

constructed, as in the nonexperimental comparison groups, however, the estimate of program effect may

or may not be biased.

To test the significance of the difference in the program effect between the experimental and

nonexperimental estimates, we end up essentially testing for the significance of the difference between

the mean test scores for the actual experimental control group and the mean test scores for the

nonexperimentally constructed comparison group. This is because in the estimate of the program impact

the treatment group (those in small classes) is the same for both the experimental and the

nonexperimental impact estimates. Thus any difference between the two impact estimates is generated by
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the differences in outcomes for the experimental control and the constructed nonexperimental

comparison groups.

To implement this test with the two (across schools and across district type estimates

nonexperimental methods), we ran another regression, including only members of the experimental

control group and constructed comparison groups, and regressed the four demographic characteristics

and the entry year dummy variables, plus a dummy variable equal to 1 for the experimental control

group, on the ranked test score. The coefficient on the “control” dummy variable represented the mean

difference between the experimental control and nonexperimental comparison groups.

Empirical Results

Table 4 presents a number of selected experimental and nonexperimental estimates of effects for

the school and district type comparisons. In each row of the table, for a given estimate of program effect

four items are listed: (1) the estimated program effect (2) the standard error of the estimated program

effect, (3) the probability value for the test of significant difference of the coefficient on small, the

program coefficient, and finally (4) the sample size. In the second and third columns of Table 4, sample

sets of comparison experimental and nonexperimental estimates are given, with one from each of the

school demographic types (inner-city, suburban, rural, urban) and each of the

experimental/nonexperimental district type estimations (rural-city, rural-suburban, rural-urban).

In all seven selected cases, the experimental and nonexperimental estimates differ considerably

from each other. One of the nonexperimental estimates is of the wrong sign, while in the other estimates,

the signs are the same but all the estimates differ by at least 1.8 percentage points, ranging up to as much

as 12 percentage points (rural-city). Statistical inferences about the significance of these program effects

also vary (five of the seven pairs had differing inferences—i.e., only one estimate of the program effect

in a pair is statistically significant at the 10 percent level). All of the differences between the

experimental and nonexperimental estimates (the test of difference between the outcomes for the
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TABLE 4
Selected Representation of Various Estimates of the Effect of Small Class Size on Student

Achievement

Program (year) Experimental Nonexperimental

Inner City (K)
Program effect 3.258 9.556
Standard error of small coefficient 2.433 2.567
P value of small coefficient .168 .000
Sample size N=684 N=603

Suburban (1)
Program effect 13.158 6.188
Standard error of small coefficient 2.047 2.148
P value of small coefficient .000 .004
Sample size N=735 N=777

Rural (1-cum)
Program effect .570 -5.805
Standard error of small coefficient 1.757 1.644
P value of small coefficient .746 .000
Sample size N=1098 N=1144

Urban (1)
Program effect 4.177 11.518
Standard error of small coefficient 3.915 3.408
P value of small coefficient .287 .001
Sample size N=246 N=313

Rural-City (1)
Program effect 3.126 15.976
Standard error of small coefficient 1.097 2.011
P value of small coefficient .004 .000

Sample size N=3014 N=2063

Rural-Suburban (1 cum) 
Program effect 3.384 1.433
Standard error of small coefficient 1.220 1.866
P value of small coefficient .006 .443
Sample size N=2249 N=1034

Rural-Urban (2)
Program effect 1.069 4.174
Standard error of small coefficient 1.110 1.813
P value of small coefficient .336 .022
Sample size N=2859 N=1159
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experimental control group and the nonexperimental comparison group) in this subset were statistically

significant.

Table 5 shows the results for the complete set of the first 49 pairs of estimates. Each column

shows a different type of comparison (either school type or district type). The top row in each column

provides the number of pairs of experimental and nonexperimental estimates in the column. The second

row shows the mean estimate of program effect from the (unbiased) experimental estimates. The third

row has the mean absolute differences between these estimates, providing some indication of the size of

our nonexperimental bias. The fourth row provides the percentage of pairs in which the experimental and

nonexperimental estimates led to different inferences about the significance of the program effect. The

fifth row indicates the percentage of pairs in which the difference between the two estimated values was

significant (again the test of difference between control and comparison group).

Looking at the summarized results for comparisons across school type, these results suggest that

constructing nonexperimental groups based on similar demographic school types leads to

nonexperimental estimates that do not perform very well when compared with the experimental estimates

for the same group. In 50 percent of the pairs, experimental and nonexperimental estimates had different

statistical inferences, with a mean absolute difference in effect estimate of 4.65. Over 75 percent of these

differences were statistically significant. About half of the estimated pairs in comparisons across school

type differ by more than 5 percentage points.

Turning next to the summarized results for the comparisons across district types (using urban,

suburban, and inner-city districts as control groups for the rural districts), these results also indicate that

district-level comparisons may not be trustworthy. In particular, in 52 percent of the pairs, the

experimental and nonexperimental estimates had different statistical inferences, with a mean absolute

difference in estimate of 2.6 percentage points. Over 80 percent of these differences were statistically

significant. Approximately one-half of the experimental and nonexperimental estimates differ by more
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TABLE 5
Summary of Experimental and Nonexperimental Estimates of Effect of Small Class Size

Comparison Group Specification

Statistic Across-School Type Across-District Type

Number of pairs 28 21

Mean experimental estimate 5.536 2.621

Mean absolute experimental-nonexperimental
differences 4.649 4.925

Percentage with different inference .500 .523

Percentage with statistically significant difference
(10% level) .796 .809
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than 5 percentage points. It appears from Table 5 that using same school type to draw the comparison

group does somewhat better than using same district type. However, for neither set do the

nonexperimental multiple-regression-correction estimators perform very well. We have not gone into the

same type of detail about measures of closeness and how close is close enough as we did for the

propensity-score-matched nonexperimental estimators because we felt there was far greater interest in the

performance of the more complex propensity score method.

REPRISE AND CONCLUSIONS

We set out to test the performance of some nonexperimental estimators of impacts applied to an

educational intervention—reduction in class size—where achievement test scores were the outcome. We

tested the performance by comparing the nonexperimental estimates of the impacts to “true impact”

estimates provided by a random-assignment design used to assess the effects of that intervention.

Previous important studies that have used this approach of testing nonexperimental estimators

against experimental ones have all had employment or welfare use as the outcome variable. We felt it

important to try to determine whether the conclusions from those studies about the performance of

nonexperimental estimators carried over into the educational domain.

Our primary focus in this study was on a nonexperimental estimator based on a complex

procedure called propensity score matching. In recent years, social policy analysts have become

increasingly interested in finding out to what degree this method might provide an adequate alternative to

estimators derived from random-assignment designs. We report, also, some tests of much simpler

estimators in which multiple regression including covariates is used to attempt to correct for bias in the

nonexperimental estimators.
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We carried out the propensity-score-matching estimating procedure and used it to derive

nonexperimental estimates of the impact of smaller class size. We also developed proper standard errors

for the propensity-score-matched estimators by using bootstrapping procedures.

We found that in most cases, the propensity-score estimate of the impact differed substantially

from the “true impact” estimated by the experiment.

We then attempted to address the question, “How close are the nonexperimental estimates to the

experimental ones?” We suggested several different ways of attempting to assess “closeness.” Most of

them led to the conclusion, in our view, that the nonexperimental estimates were not very “close” and

therefore were not reliable guides as to the “true impact.”

We put greatest emphasis on looking at this question of “how close is close enough?” in terms of

a decision-maker trying to use the evaluation to determine whether to invest in wider application of the

intervention being assessed—in this case reduction in class size. We illustrated this in terms of a rough

cost-benefit framework for small class size as applied to Project Star. We found that in 35 to 45 percent

of the 11 cases where we had used propensity score matching for the nonexperimental estimate, it would

have led to the “wrong decision,” i.e., a decision about whether to invest which was different from the

decision based on the experimental estimates.

We next noted the strengths and weaknesses of the Project Star data set as a source for testing the

performance of nonexperimental estimators when compared with the experimental estimates. The

primary strength is that the variables were measured in exactly the same way, and that there were a large

number of schools with each school and each of three grades in that school being capable of serving as a

separate experiment. The primary weaknesses are that there were no measures of the outcome variable

for individual students in the period prior to random assignment and that the number of measures of the

characteristics of the students and their teachers (potential covariates) was relatively small.
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Recognizing that these data are not ideal, we argue that they still may reflect realistically a type

of context which a decision-maker would face in judging, before the evaluation began, whether the

nonexperimental design is likely to provide adequate, reliable information.

We attempted to establish, in a very rough way, how well the propensity-score-matching

estimators do relative to a much simpler nonexperimental estimator. This question might be relevant for

some cases in which resort to an adequate random-assignment design is just not feasible; if one’s only

choice is among nonexperimental estimators, which appear to perform better?

We did this test by contrasting the propensity-score-matching estimates of impacts with

nonexperimental estimates that use a multiple regression, based on the covariates available, to attempt to

correct for selection bias. The crude test is simply to see whether the propensity-score-matched estimate

of the impact was closer to the experimental estimate of impact than the multiple-regression-correction

estimate of the impact. We carried out this test for each of the 11 school-kindergartens for which we had

developed propensity-score-matched estimates. Somewhat to our surprise, the propensity-score-matched

estimator did not perform notably better than the multiple-regression-corrected estimators for most of the

11 cases.

Finally, we briefly reported some results obtained from using the multiple-regression-correction

nonexperimental estimation method. We were able to do this for several grade levels and with several

permutations on what pool the comparison sample was drawn from.

None of these multiple-regression-correction nonexperimental estimation methods appeared to

perform very well where the performance criterion was how close their impact estimate was to the “true

impact” experimental estimate obtained from the random-assignment design.

All of this work was carried out in a context of attempting to estimate the impact of an

educational intervention—smaller class size—on one type of educational outcome—achievement test

scores. In that context, our conclusion is that nonexperimental estimators do not perform very well when
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judged by standards of “how close” they are to the “true impacts” estimated from experimental

estimators based on a random-assignment design.

In addition, one might wonder whether this type of study could give much guidance for a choice

among nonexperimental estimators—a search for a second-best estimator. Unfortunately, in this study,

which tested both a very complex nonexperimental estimator—propensity score matching—and a

relatively simple nonexperimental estimator—multiple regression correction—no clear second-best could

be identified.
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8We used a Hotelling’s T-squared test.

9The higher-order terms, (teacher highest degree)3 and (total experience)3, replaced the original terms,
teacher highest degree and total experience, in the propensity-score-estimating algorithm.

APPENDIX A
Details of Propensity Score Matching and Bootstrapping Procedures

The first type of comparison group was constructed using propensity-score-matching methods.

The sample was restricted to only kindergartners, and selected from all of the Project Star schools the 11

schools with over 100 kindergartners. Using a logit model, we regressed treatment group status on all of

the reported exogenous observable characteristics, including teacher education, teacher career ladder,

student race, student free-lunch status, student sex, student age, teacher race, teacher experience, school

type, and system ID number. Separate logit models were estimated for each of the 11 schools. We used

these logit results to generate a propensity score, or predicted probability of inclusion in the program

group, based on observable characteristics.

Following Dehejia and Wahba’s (1998) suggested method, we ranked all of the propensity

scores. We then designed an algorithm to generate bins across the set of propensity scores, for which the

differences between propensity scores for program and control groups were insignificant. Next, we

designed and implemented another algorithm to generate bins across the set of propensity scores, for

which all of the covariates, or observable characteristics between program and control groups, were

jointly insignificant.8 Initially, having estimated the propensity score using only the original

characteristics (listed above), the covariates across bins did not balance. Consequently, as Dehejia and

Wahba suggest, we began adding higher-order terms. Ultimately, after adding these higher-order terms9

and reimplementing the bin-balancing algorithms, all of the covariates balanced. Having passed

Dehejia’s specification test, we used this set of variables and covariates to estimate the propensity score

used in creating all of the propensity score nonexperimental comparison groups.
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For the 11 schools with over 100 kindergartners, we estimated the experimental effect of small

classes. After estimating and ranking the propensity scores for the complete set of kindergartners, we

used a nearest-neighbor matching without replacement multiloop algorithm to select, for each program

group propensity score within a chosen school, the nonexperimental control (nonsmall) propensity score

outside the school nearest in absolute value to the program propensity scores. This set of scores, matched

to the program groups and selected from the entire set of all kindergartners in regular and regular-with-

aide classes outside of the selected school, together became the constructed comparison group, used to

yield estimates of program effect. To obtain accurate estimates of the program effect and standard errors

for each of the 11 schools, the matching without replacement algorithm was bootstrapped 500 times. The

same logit model variables (determined by the “balance testing” for the initial estimate) were used in

each bootstrap replication, but the coefficients in the logit were reestimated each time, so the estimated

propensity scores for each observation could differ from one replication to another.
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APPENDIX B
Krueger’s Benefit-Cost Calculations for Project Star

Krueger (1999, 2000) limits himself to assessing the benefits of class-size reduction in terms of

future earnings gains that may be associated with increases in achievement test scores generated by the

smaller class size. To obtain an estimate of the link between test scores in elementary school and future

earnings, Krueger relies on several other studies. After carefully assessing them, he concludes that a

reasonable estimate is that a one standard deviation increase in either math or reading scores can be

translated into an 8 percent increase in average real earnings throughout the earnings lifetime of an

individual. Using the 8 percent earnings increase per standard deviation increase in test scores and age-

earning profile for workers in 1998, he is able to translate the increase in test scores into the estimated

increase in real earnings at each age. Using the Project Star data, he estimates that reducing class size

from 22 students to 15 students was associated with a 0.20 standard deviation increase in math and

reading scores.

Krueger then notes that productivity growth over time should lead to increase in real earnings

levels and presents three possible assumptions about annual productivity growth in the future—0

percent,1 percent, and 2 percent. Then it is necessary to choose a discount rate to convert the stream of

lifetime earnings into a present value. He presents five different discount rates—.02, .03, .04, .05, and

.06. The combination of productivity growth and discount rate pairs gives him 15 different values for the

discounted present value of future earnings generated by the reduction in class size from 22 to 15.

He estimates costs of class-size reduction from the Project Star experience. These costs incurred

over 3 possible years in smaller classes should then be discounted to obtain present value of costs. He

gives the five different values of the discounted present value of costs, one associated with each of the

five discount rates.
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The two sets of discounted present values, one for benefits and one for costs, can be combined to

yield 15 benefit-to-cost ratios each dependent on the choice of assumption about the future productivity

growth and the appropriate discount rate. An annual productivity growth rate of 1 percent and a discount

rate of 6 percent would make the discounted present value of benefits just about equal to the discounted

present value of costs for class-size reduction from 22 to 15.

A related calculation, which Krueger makes on the basis of these sorts of data and assumptions,

attempts to answer the question, “What is the minimum increase in test scores from a reduction in class

size of seven students in grades K-3 that is required to justify the added cost?” In much of the evaluation

literature, impacts are translated into standard deviation units in what is called the “effect size.” An

“effect size” is the estimated impact on the outcome variable divided by the estimated standard deviation

of the outcome variable. So the question can be restated as, “What is the critical effect size for impact on

test scores that would justify the added cost of the class-size reduction?” He can obtain the answer to this

using the assumptions and data just outlined by solving the benefit-cost expression for the value of the

number of standard deviations in test scores that would just cause the present value of benefits to equal

the present value of costs. This estimate will be different for each pair of assumptions about the annual

growth rate of future productivity and the discount rate. Thus he gives a table with 15 different possible

values. If, out of these 15, one focuses, as we do in the text, on the 1 percent productivity growth and 6

percent discount rate, the “critical effect size” is 0.19 for the math and reading test scores. From the data

provided in Krueger’s papers, we can determine the a 0.2 standard deviation in the combined math and

reading test scores translates into an effect amounting to a 5.4 percentile point increase, and therefore

that is the critical criterion value we use in constructing Table 2.
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