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1. INTRODUCTION

The effective control of the major intestinal nematode infections of humans involves relatively
low cost interventions (Savioli, Bundy & Tomkins, 1992). 'Infonnpd decisions about the need
for investment in control programmes, however, also requires useable estimates of the scale
of morbidity (Guyatt & Evans, 1992).

Direct estimates of morbidity would be preferred, but the currently available techniques suffer
from major limitations. Active case detection can be useful at the local level (Pawlowski &
Davis, 1989), but demands a leve] of resources that makgg its widespread use impractical.
Passive case detection, which has more appropriate resource demands (Guyatt & Evans,
1992), is unreliable for geohelminthiases because the symptoms are non-specific; in one

prospective study of trichuris colitis only 2% of cases observed in the community had self-
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presented to the local health services (Cooper, Bundy & Henry, 1986). Furthermore, there
is increasing evidence that the most common and potentially important consequences of
infection are insidious effects on nutritional status (Tomkins & Watson, 1989; Nesheim,
1989) and on physical and intellectual development (Stephenson, 1987; Cooper et al 1990;
Nokes et al 1992a; 1992b). Such effects are unlikely to result in self-presentation to passive
case detection clinics, and will be grossly underestimated by survey procedures based on the
active detection of clinical signs. This is especially so, as the infections are ubiquitous and
both passive and active detection are usually based on deviations from local norms, which

may be greatly influenced by the infections.

There are no direct estimates of the community morbidity caused by intestinal helminths.
Instead, most studies have focused on estimating the prevalence of infections, only a fraction
of which will be associated with disease. Perhaps the first estimate of the global prevalence
of intestinal nematode infections was presented by Norman Stoll in his "Wormy World"
article of 1947 (Stoll, 1947). His technique of extrapolation from survey data has proven
robust and has been used to derive many of the more recent estimates which suggest that there
are some 1000 million infections with Ascaris lumbricoides and only slightly fewer infections
with hookworm (both Necator americanus and Ancyclostoma duodenale) and Trichuris
trichiura (WHO, 1987; Crompton, 1988,1989; Bundy & Cooper, 1989). In the absence of
reliable procedures for estimating disease directly, estimates of burden have been based on
extrapolation from the infection prevalence data to provide an estimate of the proportion of
infections which are likely to be associated with disease (Warren er al, 1993; Chan et al,
1994). This requires a careful and conservative approach because of the ubiquity of
infection; extrapolating from such large numbers has the consequence that even small errors
in estimating the disability attributable to individual cases can result in considerable
inaccuracy in estimating the total burden. Because of the inherent potential for error in the
use of any extrapolation procedure, the major aims of this chapter are to encourage
independent scrutiny of the methodology and to highlight areas which particularly warrant
further empirical study.

This chapter builds on the studies of Chan et al., 1994, and Warren, et al., 1993, and
attempts to provide improved estimates of burden of disease based on extrapolation from

observed estimates of prevalence of infection. The size of the population at risk of disability
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is estimated using epidemiological methods developed to describe the relationship between
prevalence and mean intensity, and between intensity and potential morbidity (Guyatt ez al,
1990; Lwambo, Bundy & Medley, 1992), but modified to incorporate the heterogeneity
between communities and age classes (Chan et al., 1994). The disability per case at risk is
estimated using procedures described elsewhere in this volume, and the regional and global

burden of disease is obtained by extrapolation from these estimates.

1.1 Basic Biological Characterigtics of Intestinal Nematodes

The analyses presented here focus on the four species of intestinal nematode which are of
circumglobal distribution and which occur at high prevalence: Ascaris lumbricoides,
Trichuris trichiura and the two major hookworm species, Necator americanus and

Ancylostoma duodenale.

A.lumbricoides is the large roundworm (15 cm) and lies free in the human duodenum where
it feeds on lumenal contents (see Crompton et al., 1989, for further details of the biology of
this parasite). Like all the other nematodes considered here the worms are dioecious. The
female produces some 100,000 eggs per day which pass out in the faeces of the host and
embryonate externally at a rate determined by local environmental factors. The eggs hatch
on ingestion, releasing a larva which undergoes a tissue migration involving the
cardiovascular and pulmonary systems. The larva moults as it migrates and ultimately is
coughed up from the lungs, swallowed, and becomes established as the adult in the small

intestine. The cycle from egg deposition to female patency has a duration of some 50 days.

T.trichiura, the human whipworm, is a much smaller worm (25 mm) and inhabits the colon
(see Bundy and Cooper, 1989). The anterior two thirds of the worm is thin and thread-like
and is laced through the mucosal epithelium, upon which the worm is believed to feed,
leaving the blunt posterior projecting into the colonic lumen for excretion and oviposition.
The female produces some 2000 eggs per day which pass out in the host faeces and
embryonate externally. The infectious eggs hatch on ingestion and undergo a specifically

local migration, via the Krypts of Lieberkuhen to the mucosal surface. The development

cycle takes some 60 days.

The two major hookworm species, which are of similar magnitude to the whipworm, inhabit
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the small intestine, where they attach to villi with biting mouthparts (see Schad and Warren,
1990). The worms feed on host blood and move frequently to new sites, leaving multiple,
bleeding petechial haemorrhages on the mucosal surface. A.duodenale is believed to be more
voracious, consuming some 0.14-0.40 ml of blood per day compared with 0.01-0.10 ml by
N. americanus. The eggs pass out in host faeces and embryonate. Unlike the roundworm
and whipworm, the eggs hatch externally releasing a mobile infective larva which actively
infects the human host by dermal penetration. A.duodenale is also able to infect by the oral
route, and there is evidence for vertical transmission of this species either transplacentally or
in maternal milk. Having entered the host, the larva undergoes a tissue migration to the lungs
and is coughed up and swallowed to moult to the adult in the small intestine. The cycle takes
approximately 60 days for both species. A.duodenale is apparently able to extend this period
by arresting development to the adult stage; a mechanism which may allow avoidance of

seasonally hostile external conditions.

1.2 Basic Epidemiological Characteristics

Understanding the epidemiology of helminth infections requires a fundamentally different
approach to that required for all other infectious agents. Each worm establishing in a host is
the result of a separate infection event, and the number of infective stages shed (the
infectiousness of the host) is a function of the number of worms present. In population
dynamic terms this implies that the individual worm is the unit of transmission for helminths,
while the individual host is the unit for microparasites (Anderson & May, 1982). The size
of the worm burden (the intensity of infection) is therefore a central determinant of helminth
transmission dynamics, and is also the major determinant of morbidity since the pathology
is related to the size of the worm burden, usually in a non-linear fashion (Stephenson, 1987,
Cooper & Bundy, 1989). Since the size of the worm burden varies considerably between
individuals, and infection implies only that worms are present, a population of "infected"
people will exhibit considerable variation in the severity of disease manifestations. The
intuitive assumption that all infections are equal may help to explain the historical confusion
over the pathogenicity and public health significance of helminth infection (Bundy, 1988;
Cooper & Bundy, 1989). From these considerations it is apparent that an understanding of

helminth epidemiology centres around an understanding of the patterns of infection intensity.

1.3 Worm Burden Distributions
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Worm burdens are neither uniformly nor randomly distributed amongst individuals, but are
highly overdispersed such that most individuals have few worms while a few hosts harbour
disproportionately large worm burdens (Fig 1). This pattern has been described for Ascaris
lumbricoides (Croll et al, 1982), both species of hookworm (Schad & Anderson, 1985) and
Trichuris trichiura (Bundy et al, 1985). Most studies suggest that approximately 70% of the
worm population is harboured by 15% of the host population. These few heavily infected
individuals - the "wormy people” described by Croll & Ghadirian (1981) - are simultaneously
at highest risk of disease and the major source of environmental contamination.
[figure 1]

Studies of reinfection suggest that individuals are predisposed to a high or low intensity of
infection; the size of the worm burden reacquired after successful treatment is positively
associated with the intensity of infection before treatment. This association has been shown
for all the major geohelminths (Anderson, 1986; Elkins et al, 1986; Bundy & Cooper, 1988;
Holland ez al, 1989), and persists over at least two reinfection periods (Chan L. er al, 1992).
Longitudinal studies of T trichiura (Bundy et al, 1988) and A. lumbricoides (Forrester et al,
1990) confirm that this positive association reflects a direct relation between the rate of
reinfection and initial infection status. Thus in an endemic community it appears that there
is a consistent trend for an individual to have an above (or below) average intensity of
infection. This trend is more apparent in children with A. lumbricoides (Haswell-Elkins e al,
1987) and T. trichiura (Bundy & Cooper, 1988) infection, and more apparent in adults with
Necator americanus (Bradley & Chandiwana, 1990) infection, perhaps reflecting the different
age-intensity patterns of these species. This pattern is also apparent at the family level (Chai
et al, 1985; Forrester et al, 1988,1990; Chan L. ez al, 1994).

1.4 Worm Burden and Host Age

Overdispersed distributions of infection intensity are observed in the community as a whole
and also in individual age-classes. The degree of overdispersion, however, shows some age-
dependency. In hookworm infection the distribution becomes more overdispersed in adults
(Bradley & Chandiwana, 1990), while in A. lumbricoides and T. trichiura there is evidence
that dispersion increases to a peak in the child age classes (Bundy e al, 1987b) and then
declines in adults (Chan L. ef al, 1992). These changes reflect age-specific trends in the

proportion infected (the size of the zero class in the frequency distribution) and in the mean



intensity of infection (the mean of the distribution).

The age-dependent pattern of infection prevalence is generally rather similar amongst the
major helminth species, exhibiting a rise in childhood to a relatively stable asymptote in
adulthood (Fig 2). Maximum prevalence is usually attained before 5 years of age for A.
lumbricoides and T. trichiura and in young adults with hookworm infection. In A.
lumbricoides there is often a slight decline in prevalence during adulthood, but this is less
common with the other major nematode species.

[figure 2]

Prevalence data indicate the proportion of individuals infected, and do not provide a simple
indication of the number of worms harboured. Figure 3 shows the relationship between
prevalence and worm burden. The marked non-linearity of this relationship is a direct
statistical consequence of the overdispersed pattern of intensity. If worm burdens were
uniformly (normally) distributed there would be a linear relationship between prevalence and
intensity (see Anderson & May, 1985). This is an important relationship since it is central to
the method of extrapolation from infection prevalence to infection intensity described in this
chapter. It is worth emphasising therefore that the relationships in Figure 3 are firmly based
on empirical studies of the major species of intestinal helminths (see Guyatt et al, 1990;
Lwambo et al,1992; Booth, 1994 for detailed discussion of this issue).
[figure 3]
The lack of simple correspondence between prevalence and intensity has the consequence that
the observed age-prevalence profiles provide little indication of the underlying profiles of age-
intensity. For most helminth species the initial rise in intensity with age closely mirrors that
of prevalence but occurs at a slightly slower rate (Fig 4). Maximum intensity occurs at a host
age which is parasite species-specific and dependent on parasite longevity, but independent
of local transmission rates (Anderson, 1986). For A. lumbricoides and T. trichiura maximum
worm burdens occur in human populations at 5-10 years of age and for hookworms 20-25
years.
[figure 4]

The most important differences in the age-intensity profiles of these species become apparent
after peak intensity has been attained. A. lumbricoides and T. trichiura both exhibit a marked

decline in intensity to a low level which then persists throughout adulthood (Fig 4a). Age-
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profiles based on egg density in stool had suggested that there was considerable variation in
the patterns seen in hookworm (Behnke, 1987; Bundy 1990), but it now appears, from studies
where burdens have been enumerated by anthelmintic expulsion, that the intensity attains a

stable asymptote, or rises marginally, in adulthood (Pritchard ez al, 1990; Bradley et al,
1992) (Fig. 4b).

Thus, for those species with convex age-intensity profiles, but asymptotic age-prevalence
profiles, a similar proportion children and adults are infected but the adults have substantially
smaller worm burdens. With hookworm infection, where both prevalence and Intensity are

asymptotic, more adults are infected and they have larger worm burdens.
2. DEFINITION AND MEASUREMENT

For most helminthjases the relationship between infection and disease is likely to be non-
linear and complex. If we accept, for the moment, the simple premise that only heavy worm
burdens cause disability, then it is apparent that disability will have an age-dependent
distribution, since intensity is age-dependent, and also that disability will have an
overdispersed pattern even within the susceptible age-classes. The relationship is further
complicated by the non-linear relationship between the severity of disease and the intensity
of infection, and by the interaction between symptomatology and the chronicity of infection.
Helminthic infection does not inevitably lead to disease: a failure to appreciate this has lead
to apparently contradictory results from morbidity studies and may be the major contributor

to the under recognition of the public health significance of helminthiasis (Cooper & Bundy,
1988,1989).

An essential pre-requisite, therefore, to assessing the global burden of disease is the
estimation of the sub-population of the infected population which has a sufficiently large
worm burden to put them at risk of disability. This requires some method of relating
prevalence of infection data, which are available from empirical studies in all geographical
regions, to intensity of infection data, which are not. In this section we describe procedures

for extrapolating intensity from prevalence survey data, and for partitioning the risk of
disability.



2.1 Worm Burdens and Morbidity

There is a general acceptance of the simple view that very intense infection results in illness,
a view that reflects both clinical experience of overwhelming infection and, perhaps equally
importantly, an atavistic repugnance at the insidious invasion of the body by large numbers
of worms. Such extremes of infection result in the severe anaemia of necatoriasis and the
intestinal obstruction of ascariasis (Stephenson, 1987), and the chronic colitis of classical
Trichuris Dysentery Syndrome (Cooper & Bundy, 1988). That helminth morbidity is
dependent on infection intensity is, from this perspective, uncontroversial. An understanding
of the pattern of the relationship between infection intensity and clinical signs has proven

more elusive. This appears to be due to two main factors.

Firstly, intensity and pathogenesis are non-linearly related. Studies of the anaemia associated
with hookworm infection indicate that there is a disproportionate reduction in plasma
haemoglobin concentration after some threshold worm burden is exceeded. Although
profound anaemia is associated with thousands of worms, a clinically important anaemia can
be induced by a few hundred worms, the precise threshold depending on host iron status
(Lwambo et al, 1992). Note that this occurs despite the constant per capita blood loss due
to hookworm feeding (Martinez-Torres et al, 1967) which might intuitively be expected to
give a linear relationship between burden and anaemia. Studies of protein-losing enteropathy
in trichuriasis also indicate a non-linear relationship with worm burden (Cooper et al, 1990).
The rate of gut clearance of e-1-antitrypsin at first rises rapidly with increasing worm burden
to a threshold and rises more slowly thereafter (Figure 5). This implies that significant intra-
lumenal leakage of protein can occur with T. frichiura burdens of a few hundred worms. The
clinical consequences of this loss will be determined by the nutritional and dietary status of
the host and by the chronicity of infection (Cooper et al, 1986). In one study, children with
the classical Trichuris Dysentery Syndrome had all experienced mucoid dysentery and rectal
prolapse for more than 3 years (Cooper & Bundy, 1989).
[figure 5] [figure 6] [figure 7]

The second reason for the lack of understanding of the relationship between intensitﬁl and
disease is the difficulty of measuring and attributing morbidity. This is in part the classical
epidemiological problem of identifying specific morbidity in an endemic population subjected
to multiple insults (Walsh, 1984). It is exacerbated for helminth infection, however, by the

absence of pathognomonic signs in moderate, but clinically significant, infection. This
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problem has been addressed by intervention trials using specific anthelmintic therapy. Such
studies have shown, for example, significant improvements in linear growth after treatment
of moderately infected and stunted children with hookworm, A.lumbricoides or T. trichiura
infection (Stephenson, 1987: Stephenson ez al, 1990; Cooper et al, 1990) (Figures 6 and 7).
Even more subtle consequences of infection are suggested by recent double blind placebo
trials which show significant improvement after anthelmintic treatment in the cognitive ability
of school children moderately infected with T, trichiura (Nokes er al, 1991, 1992a) (Figure
8). These results suggest that even moderate helminthic infection may have insidious
consequences that are unlikely to be attributed to helminthiasis in public health statistics. In
one study of a village population with hyperendemic geohelminthiasis (Cooper et al, 1986),
only 2% of actual morbidity had been reported to the health authorities.
[figure 8]
Some insights into the relationship between infection and disability can be provided by data
analytical procedures (Guyatt er al, 1990; Lwambo et al.,1992). Empirical studies can
provide estimates of the threshold number of worms associated with risk of disability (see
above), then using models which describe the empirical relationship between infection
intensity and prevalence shown in Figure 3 it is possible to estimate the proportion of
individuals which exceed the threshold worm burden (i.e. are likely to suffer disability) at a
given prevalence of infection. This relationship between the prevalence of infection and the
estimated proportion of the Population at risk of disability is shown for a range of thresholds
of A. lumbricoides in Figure 9. Analysis of the estimated incidence of Ascaris-induced
intestinal obstruction in relation to the local prevalence of ascariasis (based on empirical data)
has in fact shown this type of non-linear relationship (de Silva et al, in press). Non-linear
relationships of this form have also been shown in studies of schistosome infections, for
which adequate country based morbidity data are available (Jordan & Webbe, 1982). There
is a need to obtain similar data for other intestinal nematodes, but this is currently confounded
by the difficulties in estimating morbidity directly for these infections. However, one
important conclusion of this analysis is that the threshold need not be precisely defined since
the form of the relationship between infection and disease js relatively insensitive to the
threshold value, provided the value is relatively large (> 20 worms Figure 9).
[figure 9]
These analyses indicate that the Proportion at risk of disability increases dramatically as

infection prevalence rises. For example, if 25 A. lumbricoides worms are associated with
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disease, then 20% the population will be at risk at an infection prevalence of 80%, and less
than 2% at an infection prevalence of 70%. It is worth noting that both these infection
prevalences could reasonably be considered to be high, which may help explain why studies
of helminth morbidity in "high" prevalence areas often reach very different conclusions about

the public health significance of helminthiasis (see for example Keusch, 1982).

The relationships described here form the basis for the extrapolation procedure developed in
this chapter. This procedure involves the use of infection prevalence survey data from
individual countries to give an estimate of regional and global prevalence of infection. Then
the estimation of the fraction of this infected population which empirical data suggest places
the population at risk of disability. The following sections describe this procedure and

discuss the validity of its assumptions.

2.2 Estimation of Risk of Disability from Infection Prevalence Data

This estimation is based on the relationship between worm burden and prevalence of
infection. The frequency distribution of worm burdens between individuals has been
consistently shown to be highly overdispersed (1.3, above). Within a community, the
majority of people have few or no worms and a few people have very high worm burdens.
Observed distributions can be represented empirically by a negative binomial distribution
(Anderson & Medley, 1985; Guyatt ez al, 1990; Lwambo et al, 1992; Bundy & Medley,
1992). This theoretical distribution has two parameters, the mean worm burden, u, and the
aggregation parameter, k. General values used in this study are k=0.54 for A. lumbricoides
( Guyatt et al, 1990), k=0.23 for T. trichiura (Booth,1994) and k=0.34 for hookworms

(Lwambo et al, 1992), and are estimated from empirical data.

The basis for the estimation of potential disability is that the risk of disability is higher in
individuals with higher worm burdens and that there is some threshold worm burden above
which disability is more likely to occur (Table 1). The proportion of the population with
worm burdens higher than this threshold can then be estimated from the negative binomial
distribution (Guyatt & Bundy, 1995; Lwambo et al, 1992; Medley et al, 1993). This
approach is necessarily an approximation, since the effects of a given worm burden on an
individual will be modified by the condition of an individual (eg. nutritional status and

concurrent infections) and the chronicity of the infection.
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Studies indicate that developmental effects of infection (eg cognitive and growth deficits)
occur at lower worm burdens than the more serious clinical consequences. We therefore use
two sets of thresholds for each species, where the lower threshold corresponds to a higher
estimate of potential disability and vice versa. These thresholds are shown in Table 1. The
thresholds for A.lumbricoides and T trichiura correspond to those given in Chan et al, 1994,
except for one change in the A.lumbricoides thresholds, as explained below. The thresholds
for hookworm have been adjusted downwards. This reflects the recent analyses presented
by Crompton and Whitehead, 1993, and the observation that the thresholds reviewed by
Lwambo et al 1992 apply to adults rather than children, as had been assumed in the previous
calculations.

[table 1]
There is a lack of data on the relationship between disability threshold and age. However,
since a given worm burden is more likely to cause disability in children than in adults the use
of a single, age-independent threshold would tend to considerably over-estimate the potential
disability. In order to approximate this age effect, in the absence of empirical data, the same
proportional changes with age are used for all worm species. The threshold for children under
five was taken as 50% of that for adults (i.e. adults require twice the worm burden of pre-
school children before suffering ill effects), for five to ten year old children it was taken as
75% of that for adults, and the adult threshold was used for ten to fifteen year old children
(Table 1). For A. lumbricoides only, the thresholds for the children under five years was
taken as 50% of that for the five to ten year olds, to reflect the empirical observation that the
age distribution of Ascaris-related complications is such that almost equal numbers of these
age groups are affected (de Silva ez al, in press). These estimates are, we believe,
conservative, but not firmly based on empirical observation.

[table 2]
Other age-dependent differences are also incorporated into the model. A. lumbricoides and
T. trichiura infections are usually more prevalent in children whereas hookworm infections
are more prevalent in adults (1.4, above). For simplicity, a single age-prevalence relationship
(one for each species) was used, based on the typical age-prevalence relationship observed
in field studies (Table 2). The age-weights for the under-fives has been adjusted upwards
from that given in Chan ef aJ 1994, for A.lumbricoides and T.trichiura only, based on re-
analysis of empirical data on age-prevalence in these infections (Ratard ez al, 1991, Yu et al,

1989, Rahman, 1993). The use of different prevalences for different age classes implies that
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a separate negative binomial distribution must be calculated for each age class. In order to
ensure that the overall prevalence remains unchanged by this procedure, the observed
demographic age distribution of the population must be taken into account. The effect of host
age on the aggregation parameter (k) remains undefined and the present framework uses a

single (species specific) aggregation parameter for all age groups.

2.3 Incorporating Geographical Heterogeneity

The prevalence of infection is nqn—linearly related to the mean intensity of infection in a
community, such that the proportion of the population potentially suffering morbidity is
disproportionately greater at higher levels of prevalence (Guyatt & Bundy 1991). If the
average prevalence among communities is used as a basis for estimating intensity (and
potential disability) for a geographical region, this will grossly underestimate the actual
morbidity. It is therefore necessary to incorporate geographical heterogeneity in prevalence
within the estimation procedure (Chan et al, 1994). Spatial heterogeneity in intestinal
nematode infection is a relatively neglected area of study (Booth & Bundy, 1992; Bundy ez
al, 1991) but its potential importance has been convincingly demonstrated for microparasitic

infections (Anderson, 1982; May & Anderson, 1984).

Heterogeneity is considered at several geographical levels in the extrapolation procedure. The
highest level is the eight regions of the world defined for the Global Burden of Disease study.
EME and FSE were excluded from the analysis since the prevalences of intestinal nematode
infections are very low. The remaining six regions are then divided into "population units",
of 20 to 100 million people for which mean prevalence values, based on empirical data, are
input into the model. Generally these population units coincide with politically defined
countries (which is the unit for which prevalence data are most readily available) but some
countries with exceptionally large populations, especially China and India, are subdivided into
smaller units based on States or Provinces for prevalence estimates.
[figure 10]

The subdivision of a region into population units captures some geographical heterogeneity,
but this does not include the heterogeneity within the population unit (or country). Literature
searches yielded suitable data for examining within country variatioh in all six geographical
regions. The level of heterogeneity among communities within the same country was assessed

using community level estimates of prevalence from different studies. Variation in prevalence
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within countries was estimated for nine countries for A. lumbricoides, eight countries for T.
trichiura, and ten countries for hookworm (Figure 10). The number of prevalence surveys
available within each country ranged from 21 to 115. A total of 1600 prevalence surveys were
examined in this analysis. The within country distributions differed between worm species
and between countries but were not markedly skewed or asymmetrical. Good correspondence
is found between the data and the theoretical N ormal distribution which was therefore used.
[figure 11)
Highly significant positive correlations between mean and standard deviation were observed
for A. lumbricoides and T. trichiura distributions (figure 11a&b). Therefore an estimate of
“typical" geographical heterogeneity within a population unit could be estimated for these
species from the regression.-Hookworm show a wider range of standard deviations and there
was no significant correlation between these and the means (figure 11c). This may reflect the
fact that the hookworm data include undifferentiated estimates for two quite different parasite
species (4. duodenale and N. americanus). This additional source of variation was captured

by taking the mean of the standard deviations as an estimate of within population unit
heterogeneity.

These estimates of the geographical variation in prevalence within a population unit were

assumed characteristic of each species and were incorporated in the model for all subsequent

calculations.

2.4 Summary of Estimation Procedure Assumptions
The framework for estimation of the population at risk of disability involves a set of

assumptions about the patterns of infection observed at both the community and the regional

level.

Community Level Assumptions

Worm burden frequency distributions are adequately described by the negative binomial
distribution. This probability distribution is the most widely accepted empirical description
of observed worm burden distributions (see Anderson & May, 1991). However, it has been
shown in some parasite species to underestimate the proportion of very low worm burdens
and thus, potentially, overestimate the number of people in the higher worm burden classes.

This could lead to an overestimation of the population at risk.
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The frequency distribution of worm burdens is species specific and largely independent of
geographical region, infection prevalence or age group. Analyses of the available empirical
data suggest that the degree of aggregation, as assessed by the negative binomial parameter,
k, is remarkably consistent between studies and largely independent of geographical region
for all the nematode species considered here (Guyatt et al, 1990; Lwambo ez al, 1992; Booth,
1994). There is some evidence that k increases slightly with prevalence of A. lumbricoides
(Guyatt et al, 1990) and even more marginally with hookworm prevalence (Lwambo ez al,
1992). Exclusion of this effect would lead to over-estimation of potential morbidity. There
is conflicting and limited evidence for the relationship between worm burden distribution and
age, with some studies showing an increase and others a decrease in aggregation with age
(Bundy et al, 1987b). The current assumption of an age-independent distribution could lead

to either over or under-estimation of potential morbidity.

Disability occurs above a worm burden threshold which is higher for adults than children.
Thresholds were estimated from empirical data (Table 1). Two sets of thresholds were used
for each species. An overestimate of the threshold worm burden would lead to an
underestimate of potential morbidity and vice versa. No information is available on the

variation of the threshold with age.

The age prevalence profile can be generalised between communities. A similar general pattern
is seen when age prevalence profiles from different studies of the same species are compared
(Anderson & May, 1985). The effect on the estimates of changing the shape of the age-
prevalence profile are likely to be complex but in general, the larger the differences in

prevalence between different age groups, the higher the éstimate of population at risk.

Regional Level Assumptions

Infection prevalences between communities in the same country are Normally distributed.
Examination of the actual distributions suggested a Normal approximation would be
appropriate (Chan et al, 1994). The use of a symmetrical distribution is the most conservative
assumption since with a skewed distribution with the same mean (such as the negative
binomial distribution), the frequency of very high prevalences will be increased . The current

assumption may therefore tend to underestimate the population at risk.
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The standard deviations of these Normal distributions increase linearly with the mean
prevalence for A. lumbricoides and T. trichiura and are independent of mean prevalence for
hookworms. These assumptions are the best available estimates of the effect of spatial
heterogeneity on the prevalence distribution, and are based on data presented in Chan ez al,
1994,

The mean-standard deviation relationship is the same in different geographical regions of the
world. The data available suggest a consistent relationship but there are insufficient data to
assess this relationship by region. It is not known if there are any regional differences nor

whether these might increase or decrease the estimates.

A population unit of 20 to 100 million people is a sufficiently fine-grained spatial
Stratification to capture geographical variation in a Ppopulation of 4.1 billion people. The size
of this unit is constrained by the availability of empirical data. Larger units would reduce the
precision of the estimates of potential morbidity.

2.5 Estimation Procedure

The method used for estimation is essentially an integration of all the processes described in
the text and is illustrated as a flow chart in figure 12. Fuller details are given in Chan et al. ,
1994. In summary, the procedure involved the following steps.

[figure 12]
1. Country (or other population unit) prevalence data are obtained and divided into prevalence
classes (vector R in figure 1). Five prevalence classes were defined and an intermediate
prevalence value (S) was used for calculation purposes. These classes are shown in table 3.
[table 3]

2. The total populations in each prevalence class are multiplied by the transition matrix 1.7))
to give an estimated community distribution of prevalences for the region (C). The matrix is
derived using the following procedure. For each reference prevalence class in the estimation,
a Normal distribution for the individual community prevalence class distribution in the
countries concerned was calculated. For A. lumbricoides and T. trichiura a standard deviation
that increased with mean was used whereas with hookworms a constant standard deviation
given by the average standard deviation of the data sets was used. The regional community

distribution of prevalences can then be obtained by multiplying a vector of the country mean
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prevalence distribution with a species specific transition matrix which consists of the

calculated Normal distributions:

C-R.M @

The community prevalence distribution has one zero prevalence class and four non-zero
prevalence classes equivalent to the four lower prevalence classes of the country prevalence
distribution (table 3). Note that in the previous estimation (Chan er al 1994) a fifth
prevalence class (>75%) was included. This is now considered to over-emphasise the top
end of the prevalence range and thus to overestimate the population at risk, and was therefore

not used in the present calculations.

The transition matrices used for each of the species are shown in table 4 a-c.

[table 4]
3. Using regional demographic data, the population is divided into classes of community
prevalence and age group and the age-weighted prevalence is calculated for each of these
classes. The age weights (4) are shown in table 2. Given a community prevalence s; for
prevalence class i, the prevalence in adults (p, ;5,) is given by:

i
pi,lSo_ E(ajdj) (2)
j

where g; is the age weight for age group j and d; is the proportion of the population in age

group j. The age specific prevalence in the other age groups are then given by:

PyPi15.9 3)

4. For each of the classes, using the species specific aggregation parameter (k) and age
specific morbidity threshold (#;), the potential morbidity estimate (e;) is calculated using the
negative binomial distribution. This theoretical distribution has two parameters, the mean
worm burden, p, and the aggregation parameter k. These are related to the prevalence (P) in

the following way:
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The basis for the estimation of the population at risk of disability is that morbidity is mainly
confined to the fraction of the population with high worm burdens. A threshold worm burden
(7) is defined over which morbidity effects are potentially observed (table 1). The individual

terms of the negative binomial, = (), (the proportion of individuals with x worms) are given
by:

1+ -k P(k*x) M
T (0)=(1+ulk) (‘x! I"(k))(wk) &)

where T represents the gamma function. The proportion of the population with more than (T)
worms (the morbidity function Morb (P,T)) is therefore given by:

X-T

Morb(P,T)-1-X (%) 6
x0

The potential morbidity estimate (ey) is obtained by multiplying the morbidity function by the

population in each class (ny).

e;rn; Morb(p,, 1) 7))

5. The above estimates are summed to give the age specific population at risk estimates for

each region (f).
¥ ®)

These procedures were followed for each of the parasitic infections under consideration.,

2.6 Estimates of Population Infected and at Risk of Disability
The estimates are shown in tables 5 to 10. For ¢ach nematode species, these estimates are

given for different age classes and for different geographical regions. Two estimates of
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population at risk are presented for each infection, based on different estimates of worm
burden thresholds. Both thresholds are based on empirical data and were chosen to be
relatively conservative. The lower estimate of worm burden reflects probable developmental
consequences of infection such as impaired growth or fitness while the higher estimate is

intended to reflect the likelihood of more serious consequences of infection.

The estimates of population infected are all slightly lower than those presented in Chan ez al,
1994, due to the Qxclusion of t;le highest reference prevalence class from the present
extrapolation procedure (see 2.6). This has had an even greater effect on reducing the
estimated size of the population at risk of disability from ascariasis and trichuriasis, and on
the estimated population above the high threshold for hookworm infection. The estimated
population above the lower threshold of hookworm burdens has however increased as a result
of the change in threshold (see 2.3).
[tables 5]

The estimates for A. lumbricoides are shown in tables 5. The estimated total number of A.
lumbricoides infections is 1274 million, slightly higher than estimates from other sources
(WHO, 1987; Bundy, 1990; Crompton, 1988). The number at risk of morbidity is estimated
in the range 12 to 59 million. The overall infection prevalence is 31% in the exposed
population while the prevalence of those at risk in the exposed population is between 0.3 %

and 1.4%.

The model assumes that prevalence of A. lumbricoides infection is slightly higher in children
of 5 to 15 years old as compared with adults and younger children (Anderson & May, 1985).
The results show that this difference is greatly magnified in the estimates of population at
risk, such that potential morbidity is significantly higher in school age children than in any
other age group. This is due to the non-linear relationship between prevalence of infection
and potential morbidity (Guyatt ef al, 1990).
[tables 6]

The estimates for T. trichiura are shown in table 6. The totals show a lower number of
infections than for A. lumbricoides, there being 902 million infections resulting in a global
prevalence of 22%. The total population at risk is also lower for T. trichiura; in the range
7 to 26 million.

[tables 7]
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The estimates for hookworm infections are shown in table 7. There are an estimated 1278
million hookworm infections and between 35 and 148 million people at risk of disability.
The distributions of infection and morbidity, both by age and regic;n, are different from those
for A. lumbricoides and T. trichiura. The disability risk due to hookworm infections is much
higher in adults. The regional distribution is also different, with the highest prevalence of

estimated disability in India.
3. REVIEW OF EMPIRICAL DATABASES BY REGION

In contrast to most other diseases examined in this volume, direct estimates of the community
morbidity attributable to intestinal helminthiases are unavailable. Hence the DALY estimates
are based on extrapolating the population at risk (intensely infected) from empirical

observations of the proportion of the population infected.

The prevalence of infection data used in the current estimation are from a database held at
Oxford University, derived from field survey data compiled for a UNESCO report on global
prevalence of helminth infection (Bundy & Guyatt, 1990). They are based on an extensive
search of the original literature and, as far as possible, represent data collected within the last
20 years, data older than this only being used if no other data were available for a particular
country. Additional criteria for data selection include: large sample size and community based
studies (i.e nor hospital records or institutional data). The number of studies available for
each country varied and hence the reliability of the estimate for mean prevalence also varies.
For the majority of countries the sample size was at least several thousand individuals. Note
that the data presented in Table 8 excludes a substantial number of unpublished surveys used

in the actual analysis.

The survey estimates are based on the microscopic detection of parasite eggs in faecal
specimens. While A.lumbricoides and T.trichiura eggs can be readily identified, the eggs of
the two hookworm species, Ancyclostoma duodenale and Necator americanus, cannot be
distinguished by normal diagnostic methods and are recorded here as the combined prevalence
of both species. The stool examination procedure also fails to detect light infections,
particularly when single examinations are made as in the case of field surveys (Hall, 1982).

Furthermore, the procedure will not detect non-fecund infections (eg single worm or single

19



sex) which may represent a significant minority of infections (Guyatt, 1992; Guyatt & Bundy,
1995). Thus the survey data are conservative and underestimate the true prevalence of

infection.

[table 8]

4. ESTIMATION OF DALYs

The analyses to this point have produced estimates of the size of the populations with worm
burdens which are likely to result in some form of disability. This section focuses on the
estimation of the proportion of the at risk population who are likely to be disabled and the
degree of disability, and how this varies with such factors as age and sex. It also attempts

to partition the relatively rare mortality attributed to intestinal nematode infection.

The calculation of DALYSs is based on the population at risk of disability. It is assumed that
there are three sources of DALY loss. Firstly, contemporaneous disability of two types:
insidious deficits which occur in individuals with worm burdens above the lower threshold
in Table 1 and which persists only as long as the individual remains infected (Type A
morbidity); and more serious illness which affects those with worm burdens above the higher
threshold (Type C morbidity), also during the course of the infection. Secondly, chronic
disability which occurs in a small proportion of children with worm burdens above the lower
threshold and which is life long (Type B morbidity) and finally, life years lost from mortality.
The sum of these three effects gives the overall DALY estimate.

4.1 Population at Risk of Disability

These populations are estimated in Section 4, above, and shown in Tables 9 to 11. Note that
these are not the populations infected but some fraction of these which are at risk of disability
because their worm burdens exceed a threshold that has been shown to be associated with
some disability. For each species there are two populations considered to be at risk, based
on two estimates of threshold burden: a larger population with worm burdens exceeding the
lower threshold (associated  with insidious, developmental disability which is
contemporaneous or permanent, categorised as morbidity Types A and B); and a smaller

population with burdens exceeding the higher threshold (associated with more serious,
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contemporaneous disability, categorised as morbidity Type C). The proportion of the
population at risk (not the prevalence of infection) is given in Tables 9 to 11.
[tables 9 to 11]

These estimates have been recalculated and differ from the original estimates (World Bank,
1993, Chan ez al, 1994). For A.lumbricoides and T trichiura they are substantially lower as
a result of removing the highest prevalence reference class from the extrapolation analysis
(see 2.6). This change avoids an over emphasis on the highest prevalence classes which
contribute dispropo_rtionately to the at risk population, and so gives a more conservative
estimate. For A.lumbricoides, the estimated population of the under-fives at risk of morbidity
is much higher than previously because of the increase in the age-prevalence weight and the
lowered thresholds. This results in similar estimates of the numbers of under-fives and five-
to ten-year olds at risk of morbidity. For T.trichiura too, the estimated number of children
below the age of five years at risk of morbidity has increased from previous estimates, as a
result of the increase in the age-prevalence weight. For the hookworm estimates, there is the
same change in procedure in the extrapolation analysis and a change in the worm burden
thresholds (see 2.3). The change in threshold was necessary to correctly assign the thresholds
to the appropriate age classes in the light of new information. The effects of these changes
for hookworm infection are to substantially reduce the estimated size of the population above

the higher threshold and to slightly increase the population above the lower threshold.

4.2 Contemporaneous Effects of Infection.
Given that people in endemic areas are continuously infected and reinfected throughout life
it can be assumed, for present purposes, that incidence is numerically equivalent to

prevalence and that infection duration is one year.

With A. lumbricoides the most common consequences of infection are insidious effects (Type
A morbidity) which are often manifested as effects on development (reviewed by Crompton,
Nesheim and Pawlowski, 1989). They are, however, contemporaneous effects in that they
can be partially reversed on treatment; that is, they occur only while infection persists. Such
effects include reduction in growth rate (height-for-age and weight-for-age), physical fitness
and appetite, for school age and younger children (Stephenson ez al, 1989, 1990, 1993).

There is also evidence that this infection has consequences for cognitive ability in school age

children.
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[Tables 12]
Cognitive consequences have yet to be sought in adults, but it would be surprising if adults
responded differently from children since the effect is on ability rather than development.
We assume here that adults with above threshold worm burdens are affected, although the

proportion of adults in this category is very small (0.02 %).

The disabling consequences of reduced physical fitness and cognitive ability have yet to be
empirically quantified, as is the case for many of the morbid effects for which DALY
estimation is attempted. We assume here, by default, that this type of morbidity results in
disability at the lowest disability weight (Class 1) and that all those with worm burdens above

the lower threshold are at risk.

There are also more serious consequences of infection, largely associated with obstruction
of ducts and intestinal lumen by these large worms (Type C morbidity). Systematic data on
these acute complications are lacking, but the numerous reports based on inpatient records
suggest that ascariasis is an important cause of hospitalisation in endemic areas (reviewed by
Pawlowski and Davies,1989). Ascariasis was the cause of 2.6% of all hospital admissions
in Kenya in 1976, and 3% in a children's hospital in Myanmar between 1981 and 1983
(Stephenson ez al, 1980; Thein-Hlaing, 1987). Complications due to ascariasis accounted for
0.6% of all admissions to a paediatric surgery department in South Africa in 1987, 5.8% of
emergency admissions to a hospital in Mexico in 1975, 10.6% of admissions for acute
abdominal emergency to a children's hospital in Myanmar, and between 0.8% and 2.5% of
admissions in a survey of hospitals in China (WHO, 1987; Flores and Reynaga, 1978; Thein-
Hlaing et al, 1990). The most common abdominal emergencies presenting are intestinal
obstruction and biliary ascariasis, the proportions varying geographically, perhaps due to
differences in diagnostic procedures (Maki, 1972). In an analysis of nine studies, each
consisting of 100 or more patients hospitalised due to ascariasis, intestinal obstruction
accounted for 38 - 87% of all complications, with a weighted mean of 72% (de Silva et al,
in press). The classical surgical presentation is in patients between 3 and 10 years of age,
although adults also may be affected (Davies and Rode, 1982; Chai et al, 1991). Laparotomy
due to ascariasis was the second most common cause of all laparotomies in 2-4 year old
children in Durban, Lishiu and Sao Paulo, and the fifth or sixth cause in adults in Myanmar,

China and Nigeria (WHO,1987). Analysis of empirical data from 11 studies of patients
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hospitalised due to intestinal obstruction in areas endemic for ascariasis (prevalences ranging
from 9 to 92%) indicated that the estimated incidence of Ascaris-induced intestinal
obstruction varied between O and 0.25 cases per year per 1000 population in these areas,
increasing non-linearly with rising prevalence as indicated in Figure 13 (de Silva et al, in
press). This is equivalent to about 2% of the number of individuals exceeding the higher
threshold. These patients will suffer a severely disabling condition, which may be life
threatening (see 4.4 below), but which can be alleviated by appropriate clinical management.
If it is assumed that such cases are managed appropriately, then the duration of disability is
likely to be of the order of a few weeks. Complicated ascariasis has a reported history of
> 10 days followed by 5 days of management, while the management of biliary ascariasis
involves 4-6 weeks of observation before opting for surgical intervention (Davies and Rode,

1982).
[figure 13]

In addition to these serious complications which are relatively rare, non-specific symptoms
such as intermittent abdominal pain or discomfort, nausea, anorexia and diarrhoea are often
seen in patients with ascariasis (Upatham ez al, 1989), causing them to seek medical attention
which may result in hospitalisation for a day or two (Dasmohapatra et al, 1971, Thein-Hlaing
1987, Chrungoo et al, 1992).

For purposes of the present analyses therefore, all those with worm burdens exceeding the
higher threshold are considered to be at risk of disability for a period of approximately two
weeks during the course of the infection. The large majority are assumed to suffer illness of
a mild-moderate severity (80% in Class 2 and 18% in Class 3 for the 0-4 year olds and 5-10
year olds, 88% in Class 2 and 10% in Class 3 for the older age groups) and a small

proportion from more severe disability (2% in Class 4, for all age groups).

With T.trichiura there is evidence that moderate intensity infections result in growth deficits
that can be reversed by the anthelmintic removal of the worms (Cooper et al., 1990; Figure
7), and that these infections result in a protein losing enteropathy and anaemia (Cooper et al,
1991; 1992; MacDonald ez al, 1991; Ramdath et al, 1995). In young children there are also
effects on development quotient (Griffiths locomotor subscale), anaemia and growth which

are at least partially reversible by anthelmintic therapy (Callender er al 1994). There is also
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an increasing body of evidence that both cognitive function (Table 12a) and educational
achievement are impaired by moderate intensity infections, and that at least some of these
effects can be reversed by anthelmintic treatment (Nokes ef al., 1992a & b. Simeon et al,
1995a; 1995b). As for ascariasis, it is assumed that all those with worm burdens above the
lower threshold are. at risk of these contemporaneous developmental effects of trichuriasis
(Type A morbidity) and result in the lowest disability weight (Class 1) for the duration of the

infection.

Particularly large burdens of T. trichiura may result in the "classical" dysenteric form of
trichuriasis, synonymous with Trichuris Dysentery Syndrome (Ramsey, 1962) and Massive
Infantile Trichuriasis (Kouri & Valdes Diaz, 1952). This typically occurs in children between
3 and 10 years of age and is associated with burdens involving at least several hundreds of
worms carpeting the colonic mucosa from ileum to rectum. The colon is inflamed,
oedematous and friable, and often bleeds freely (Venugopal et al, 1987). Reviews of case
histories suggest that the mean duration of disease at the time of presentation is typically in
excess of 12 months and that relapse after treatment frequently occurs (Gilman e? al, 1983;
Cooper et al, 1990; Callender et al 1994). The probability of relapse, and of a child
experiencing multiple episodes, is greatly enhanced because a proportion of heavily infected
children are predisposed to reacquire heavy infection even after successful treatment (Bundy
et al, 1987) (see also section 4.3). The typical signs of the syndrome (see Bundy & Cooper,
19892 for a review of 13 studies involving 697 patients) are rectal prolapse, tenesmus, bloody
mucoid stools (over months or years), growth stunting, and a profound anaemia which may
lead to a secondary anaemia. The complete spectrum of clinical features associated with the
syndrome occurs in some 30% of children with intense’ trichuriasis. Many of the major
clinical effects are reversible by appropriate therapy (Cooper, Bundy and Henry, 1986;
Gilman et al 1983), hence the disability is considered here to be a contemporaneous
consequence of infection, and categorized as Type C morbidity. For the present analyses
it is assumed that all those with worm burdens above the higher threshold are at risk, that the
disability is contemporaneous with infection, has a duration of 12 months, and that severity
varies between Class 2 and 4. For affected children (0-15 yrs), it is assumed that 90% are in
Disability Class 2, 8% in Class 3 and 2% in Class 4; among adults at risk, 90% are in Class
2, and 10% are in Class 3. Since all those exceeding the higher thresold are also necessarily

counted among those exceeding the lower threshold, in order to avoid double counting, the
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number in the former category was subtracted from the latter in calculating the proportion at

risk of Type A morbidity in trichuriasis.

With hookworm the major consequence of infection is anaemia (see Schad & Banwell, 1984
and Crompton & Stephenson, 1990 for reviews of the extensive literature in this area).
Anaemia is associated with: reduced worker productivity; reduced adult and child fitness;
reduced fertility in women,; reduced IUGR, prematurity and low birth weight; and cognitive
deficits (Fleming, 1_982; Stepheqson et al, 1993; Pollitt et al, 1989; Boivin ez al, 1993)
(Table 12a, 12b). Since the higher threshold for hookworm infection intensity was selected
on the basis of the development of anaemia it is here assumed that 100% of those exceeding
this threshold suffer some form of disability equivalent to Type C morbidity in ascariasis and
trichuriasis. As discussed elsewhere in this volume and in the original Global Burden of
Disease estimates (World Bank, 1993), the consequences of anaemia will be more serious for
a subset of the affected population, resulting in Class 2 and Class 3 disability. For the
present analyses the Global Burden of Disease disability weight distribution for anaemia was
used namely, 70% in Class 2, 24% in Class 3 and 6% in Class 4.

In order to incorporate the fact that children and women of child-bearing age are at higher
risk of developing anaemia subsequent to hookworm infection (Holland, 1987), it was
assumed that while all children and women of child-bearing age with worm burdens above
the higher threshold are at risk of anaemia, only 50% of the adult males and women over 45

years of age are at risk.

For the other two species it is assumed here that the effects are independent of host sex. It
is also assumed that the disability weight is age-independent since the method of extrapolating
the population at risk incorporates age-weights in both the prevalence of infection and the

threshold associated with disability by age.

4.3 Chronic Effects of Infection

In addition to the contemporaneous effects of infection there is evidence that some
consequences of infection are irreversible. This is the case for some cognitive deficits (Table
12), some elements of development quotient (Callendar, 1994), and for some growth effects

(Stephenson ez al, 1993) during childhood. In all studies, some forms of disability in a
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proportion of children do not respond to therapy (see for example Figure 6). We estimate
that in any annual cohort of heavily infected children some 5% suffer these permanent
consequences. Studies of reinfection show that children are predisposed to a particular
intensity of infection (Keymer and Pagel, 1990; Hall ez al 1992), such that some 30% of
heavily infected children in an annual cohort would be expected to reacquire heavy infection.
Thus each year the proportion of children exceeding the threshold worm burden will consist
of some 70% of individuals who have not previously experienced heavy infection, which
implies a cumulative increase in the proportion suffering permanent disability. We therefore
assume that each year 3% of newly heavily infected children, and children only, suffer life-

long consequences of infection.

The disability attributable to these effects, categorized here as morbidity Type B, has yet to
be empirically determined. Stunted children may be disadvantaged in education (Moock and
Leslie, 1986; Jamison, 1986; Glewwe and Jacoby, 1995), as are children with low
development quotients or cognitive impairment (Pollitt, 1990). On the other hand, physical
and mental maturation may eventually compensate, to some degree, for initial retardation
(Pollitt et al, 1986). In a recent study of two years nutritional supplementation of stunted
children, locomotor development improved in the first year (as seen with anthelmintic
treatment of trichuriasis (Callender et al, 1994)) while other areas of development did not
improve until the second year (Grantham-McGregor et al, 1991). Given this uncertainty we
assume that the permanent consequences of infection result in disability at the lowest weight
(Class 1). Thus in calculating the DALY for all the helminth infections it is assumed here
that 3% of children experiencing worm burdens above the lower threshold suffer permanent
disability of Class 1. Since the basic population at risk for both morbidity Types A and B in
ascariasis and trichuriasis are those individuals with worm burdens exceeding the lower
threshold, in order to avoid double counting in calculating DALY for these two infections,

the proportion of children at risk of Type A morbidity is assumed to be 97%.

4.4 Mortality

This is the weakest area of DALY estimation because of the lack of empirical data.
Ascariasis is the best documented helminthiasis in terms of mortality. There are numerous
studies of case fatality rates in hospitals (reviewed by Pawlowski and Davies, 1989).

Analysis of data from six studies each consisting of at least 100 patients hospitalised for
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complications of ascariasis, indicated that the case-fatality rate in these cases ranged between
3 and 10%, with a weighted mean of approximately 5% (see Table 13). These studies confirm
that death is a not infrequent outcome of complications of ascariasis, but provide little insight
into mortality rates in the community. An extrapolation from central hospital data in
Myanmar suggests there are 0.008 deaths per 1000 infections per year (Thein-Hliang, 1987),
but this is considered to be a considerable underestimate since only a small proportion of
children with severe complications is likely to have access to the hospital (Pawlowski and
Davies, 1989). Only two population based estimates are available: for the Darmstadt
epidemic (0.1 death§ per 1000 infécted per year: Krey, 1949) and for Japan prior to national
control efforts (0.061 per 1000: Yokogawa, 1976).

[table 13]
For purposes of these analyses, all deaths due to ascariasis were assumed to result from an
acute complication of ascariasis. Based on the relationship presented in de Silva ez al (in
press), an estimate was made of the probable number of cases of Ascaris-induced intestinal
obstruction, which was then assumed to represent 70% of the total number of complicated
cases. The number of deaths attributable to ascariasis was then calculated on the assumption

of a 5% case-fatality rate in those with complicated ascariasis.

No population based mortality estimates have been published for T.trichiura infection. Prior
to the advent of safe and effective therapy for T.trichiura infection in the late 1970s a
number of reports describe paediatric inpatients with Trichuris Dysentery Syndrome who,
despite clinical efforts, died as a result of profuse haemorrhage and secondary anaemia (Wong
& Tan, 1961, Fisher & Cremin, 1970) or of intussusception (Reeder et al, 1968). Although
there continue to be reports of the syndrome (see 4.2, above), a fatal outcome in a clinical
setting today would suggest inappropriate management. The picture in the community,
however, may be rather different since, in the absence of specific diagnosis, the aetiology of
the chronic bloody dysentery may be unrecognised. Nevertheless, mortality is undoubtedly
a rare consequence of the 1 billion infections. For present purposes it is assumed there are

10,000 paediatric deaths a year, which are here (Table 10) partitioned by age and region as
for A.lumbricoides.

The profound anaemia of hookworm infection (see 4.2, above) is life threatening and is
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estimated, although the means of estimation is not described, to result in 65,000 deaths per
year (WHO, 1992). Again there is a lack of empirical data, presumably, in this case, because
of the difficulty in identifying the aetiology of anaemia-related deaths. This figure is used,
by default, in the present analyses and is partitioned to ascribe the highest proportion of
mortality to women of childbearing age (15-44 years, 35,000 deaths) and equal numbers in
the other adult age groups (10,000 deaths each in women aged 45-60, men aged 15-44 and
men aged 45-60). The distribution of deaths between regions is partitioned in the same way

as for the other infections.

In including these estimates of mortality we recognise that they are unsupported by vital
registration statistics. But it should also be recognised that intense infection is most prevalent
in the poorest regions of the poorest countries. In such areas mortality may be most likely
because of limited access to appropriate management, while both the diagnosis of cause of
death and its registration may be least reliable. There is clear evidence that deaths do occur,

what is unclear is the extent of this mortality.

5. DISABILITY

The disability weights and their proportionate distributions are shown in Tables 13a, 13b and
14.

[tables 14 and 15]

Much of the disability associated with helminth infection is insidious and would be unlikely
to be brought to clinical attention. As such it is difficult to compare with the more classical
clinical signs. On the other hand, cognitive deficits may have profound consequences for
educational outcomes and growth stunting is one of the best characterised correlates with
underachievement, so these insidious effects may have far reaching societal consequences.
Achieving some realistic balance between the clinical consequences for the individual and
developmental consequences for society goes beyond the scope of the present exercise, and
would require a more sophisticated weighting system, if indeed the effects could be
quantified. For present purposes, the very low proportional weighting selected for the
chronic effects of infection is influenced by the view that the Class 1 disability weight may

be an overestimate of the effects of infection from a clinical perspective.

6. OTHER CONSIDERATIONS IN CALCULATING BURDEN
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There are three main reasons why the burden of intestinal helminths may not be adequately

captured by the present calculations.

1. There are no direct measures of morbidity against which the extrapolation procedure could
be conclusively validated. Although each step in the extrapolation was independently
assessed against empirical data as far as possible, there must remain uncertainty until

observed data become available.

2. The mortality data are largely unsubstantiated. Mortality has the potential to significantly
alter the overall burden estimates. It is therefore unsatisfactory that this central dataset has

received so little research attention.

3. There is a particular lack of information on the morbid consequences of infection in young
children. It is possible that even very low worm burdens may have disproportionately severe

effects on developing physiologies and organ systems.

4. As discussed in Section 5 above, the societal consequences of growth stunting and
educational underachievement may be of substantially greater relevance than the-disability in

the individual.

7. DISEASE AS RISK FACTORS FOR OTHER DISEASES

Intestinal nematode infection is associated with malabsorption and is a potentially important
predisposing factor for malnutrition in communities on marginal diets. These effects may
relate broadly to PEM, or to specific deficiencies . For example, A.lumbricoides infection has

been associated with malabsorption of Vitamin A.

Hookworm infection and to a lesser extent trichuriasis are associated with iron loss
predisposing to anaemia. It is self evident that the risk of anaemia is dependent on iron

balance and thus that infection may be an important contributing factor.

The attributable contribution to global malnutrition is potentially considerable given the

ubiquity of infection and its specifically high prevalence in the poorest societies with the least

adequate diets.
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8. BURDEN AND INTERVENTION

The major intestinal helminth infections can be effectively treated simultaneously with single
dose oral therapy. The treatment is widely available, safe, simple and cheap. Prevention of
reinfection requires reduction in transmission, which can be achieved by synchronised

treatment programmes and by improvements in sanitation.

In the absence of currently financed health interventions there would be some increase in the
current burden. For example, there would be a greater number of deaths from intestinal
obstruction in the absence of operative procedures, and from severe anaemia or malnutrition
in the absence of rehabilitation therapy. However, with some important exceptions such as
Japan and Korea, control of intestinal helminth infections is only rarely a component of

national public health programmes.

It could be argued that the entire burden could eventually be avoided by appropriate
application of currently available interventions. For example, evidence from Korea and Japan
indicates that reduction in the prevalence of A.lumbricoides infection at the national level
results in a significant decline in acute complications of ascariasis requiring hospitalisation
(Chai et al, 1991) and in ascariasis related mortality (Yokogawa, 1976). Curative treatment
would mitigate the contemporaneous or acute effects of infection, while measures to control
transmission would avoid chronic developmental disability, although neither could reverse

the deficits that are already present in the population.

Economic analyses suggest that carefully targeted community treatment programmes are
exceptionally cost-effective (Warren et al, 1993; Guyatt & Evans, 1992; World Bank, 1993).
This arises because the therapy is cheap (US$0.20 or less per dose), is required at infrequent
intervals (of the order of one year), can have community wide effects even if targeted at some
fraction of the population which makes the greatest contribution to transmission (such as
school age children), and can be delivered through existing infrastructures (such as schools

or the PHC system).

9. CONCLUSIONS

The global morbidity due to intestinal nematode infections, although generally accepted to be
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large, has proved difficult to quantify. The method presented here provides a framework
whereby potential global burden may be estimated in the absence of any direct measures of
morbidity. The estimates are intended to give some indication of the potential burden of
intestinal helminthiases rather than to provide absolute values. It would of course be possible
to seek further refinement of the approach, but our view is that the most pressing need is to
obtain reliable community data on the observed levels of morbidity and on the consequences
of disability. The present analyses indicate that even low levels of individual disability can
sum to a considerab}e burden with such ubiquitous infections; the important question is what
this implies for communities in pra.lctice. The analysis has revealed important lacunae in our

knowledge of these infections and it is hoped that this might guide future applied research.

The present estimates suggest that the potential morbidity attributable to geohelminthiases is
much greater than previously supposed. This reflects the inclusion of both the traditionally
recognised clinical effects of helminthiases (see WHO, 1992) and more recently recognised
developmental effects, which rarely result in clinical presentation but which may have major

consequences for the individual and the community.

Another general implication of the results arises from the similarity of the age and regional
distributions for 4. lumbricoides and T. trichiura infection and morbidity. This observation
has been made before for prevalence data (Booth & Bundy, 1992), and strong positive
correlations between A. lumbricoides and T. trichiura prevalences in communities have been
demonstrated. This suggests that these two infections could be controlled within a single
programme. The age distribution of the burden also supports the conclusion that there are
particular benefits in targeting control of A. lumbricoides and T. trichiura infection at school
age children (Bundy et al, 1985; Savioli ez al, 1992).

The results suggest that the vast majority of the morbidity due to intestinal nematodes is
readily avoidable or reversible using existing and cost-effective approaches, and that the
mortality is also a largely avoidable or remedial consequence of acute infection. These
observations, and the scale of the burden of current disease, argue for greater public health

emphasis on the control of intestinal helminthiases.
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FIGURE LEGENDS.

Figure 1: Frequency distributions of the major intestinal nematodes of humans. All the
distributions are markedly overdispersed (Data from Seo et al, 1974; Bundy, 1986; Schad &
Anderson, 1985).

Figure 2: Age-prevalence profiles for geohelminths (Data from Hsieh, 1970; Bundy e al,
1987a).

Figure 3. Non-linear relationship between infection prevalence and intensity for Ascaris
lumbricoides based on anthelmintic expulsion as a measure of intensity (redrawn from Guyatt
et al, 1991), and for hookworm (Lwambo et al, 1992) and T.trichiura (Booth et al.,1994)
based on egg counts in faeces.

Figure 4: Age-intensity profiles for a) A. lumbricoides (x7) and T. trichiura (Bundy, 1988),
b) Necator americanus (data from Bradley et al, 1992; Pritchard et al, 1991).

Figure 5. Profile of the relationship between T ¢richiura worm burden and clearance of alpha-
1 antitrypsin, a measure of gut leakage and protein losing enteropathy (Cooper et al, 1991).
The relationship is markedly non-linear.

Figure 6. Distribution of growth velocity in a population of school age children with mixed
intestinal helminth infections (Stephenson et al, 1993). The group receiving treatment shows
a significant improvement over the placebo group.

Figure 7. Growth velocity against age for children with moderate to heavy T.trichiura
infection (Cooper et al, 1990). The children exhibit dramatic catch up growth after
anthelmintic treatment even though they remain on the same, often marginal, diet.

Figure 8. Double blind trial of one test of cognitive function in school age children (Nokes
et al,1992). Infected and uninfected children have significant differences in cognitive
function prior to intervention. All groups show some improvement on retest, as a result of
prior experience of testing. But the treated group of infected children show significantly
greater improvement than the placebo group of infected children, and on retest are not
significantly different from the group which was uninfected initially.

Figure 9. Non-linear relationship between predicted prevalence of morbidity and prevalence
of Ascaris lumbricoides infection. Each line represents the theoretical form of the relationship
(for k=0.54), assuming different threshold worm burdens (from 5 to 30 worms) at which
infection is assumed to be associated with disease (redrawn from Guyatt et al, 1991).

Figure 10. Representative examples of frequency distributions of community prevalence
measured from different surveys in the same country/population unit. The figure shows
frequency distributions for hookworm prevalence in population units in which the average
prevalence is between 25% and 45%. The shaded bars show the theoretical Normal
distribution with mean of 35% and standard deviation of 20% as used in the model. The lines
show actual data from Zambia (+), Kenya (x), Nigeria (*) and Malaysia/ Thailand ().

Figure 11. Graph to show relationship between standard deviation and mean of prevalence
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data from within country prevalence frequency distributions. Each square represents the mean
and standard deviation of the prevalence frequency distribution in a particular country/region
and the data points are marked with their country of origin. Figure 7a. Ascaris lumbricoides.
Data come from the countries/regions of (with abbreviation and number of community
prevalence surveys in brackets) Nigeria (NIG, 52), Chile (CHI, 64), North Africa (NAF, 31),
East Africa (EAF, 91), India (IND, 115), Ethiopia (ETH, 29), Mexico (MEX, 53),
Cameroon (CAM, 53) and Indonesia (INS,37). The line shows the regression fit which gave
a correlation coefficient, 7, of 0.66 which is significant at p=0.01. Figure 7b. Trichuris
trichiura. Data come from the countries/ regions of North Africa (31), Nigeria (50), East
Africa (82), India (100), Chile (77), Mexico (46), Indonesia (37) and Cameroon (53). The
line shows the regression fit which gave a correlation coefficient, r?, of 0.67 which is
significant at p=0.01. Figure 7c. Hookworms. Data come from the countries/ regions of
Ethiopia (46), Nigeria (55), North Africa (31), Kenya (KEN, 45), Zambia (ZAM, 21),
Mexico (48), Tanzania (TAN, 22), Malaysia/ Thailand (M&T, 31), Indonesia (37) and India
(115). There was no significant correlation and the average standard deviation is 20.

Figure 12. Flow chart to show method of calculation for morbidity estimates.Notes:1. The
indices i and j refer to prevalence class and age class respectively; 2. The letters in lower case
denote elements of the matrix of the same letter in upper case. e.g. g, are the elements of the
matrix 4; 3. p;,s, denotes the prevalence in each class for the over 15 years age group
(adults); 4. The function "Morb" is the proportion of individuals with more than £ worms in
a population of with prevalence p; as estimated by a negative binomial distribution of worm
burdens with k=0.543 (4 lumbricoides), k=0.23 (T trichiura) and k=0.343 (hookworms)
[see text for more details].

Figure 13. Relationship between the prevalence of infection with A. lumbricoides and the
estimated number of cases of Ascaris-induced intestinal obstruction / year / 1000 population
(redrawn from de Silva et al, in press). The regression line is of the form y=b;x* + b, x,
where b,=0.222889 (S.E. = 0.068795, p=0.01) and b,=0.00001179152 (S.E. 0.047877).
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TABLE LEGENDS

Table 1. The worm burden thresholds selected for use in the model. The lower thresholds are
based on empirical observations of worm numbers associated with developmental deficits.
The higher thresholds are a more conservative value intended to provide a lower bound to the
estimate of morbidity. The thresholds were estimated for children in the 5-10 year age class,
and then adjusted for other age classes using the procedure described in the text. The lower
threshold estimate for Ascaris lumbricoides assumes that 30,000 epg is associated with
deficits in growth and fitness (see Stephenson et al, 1989, 1990) and that worm fecundity is
equivalent to approximately 3000 epg/female worm (Muller, 1975). the higher threshold
assumes that morbidity is associated with twice this burden. The Trichuris trichiura lower
threshold is taken from studies of growth stunting in 5-10 year old children (Cooper et al,
1990), while the higher threshold is estimated from studies of clinical colitis (E. S. Cooper,
personal communication). The hookworm thresholds are based on upper and lower bound
estimates of the relationship between infection intensity and anaemia (Lwambo et al, 1992).

Table 2. Age prevalence weights

Table 3. Prevalence reference classes used in the estimation procedure.

Table 4. Transition matrices used in the estimation procedure.

Table 5. to 7 Results for ascaris, trichuris and hookworm: prevalence and at risk.

Table 8. Reported survey data.

Table 9, 10 11 ascaris, trichuris and hookworm data for the calculation of DALYs
Proportion at risk and mortality are given as per 100,000 population. Durations are given in

years. Incidence is not given since data are not available.

Table 12. Selected studies investigating the effects of parasitic helminth infection on 12a.
Mental processing. 12b. Physical fitness.

Definitions for this table:

Intervention One group receives treatment. Groups tested pre and post-intervention.

Placebo controlled Infected group randomly assigned to treatment or placebo. Groups
tested pre and post-intervention.

Case Control Infected group compared to an uninfected group. Groups matched for
age as a minimum. Infected group receives treatment. Uninfected
group receives no treatment.

Pair-matched Infected group and uninfected group pair matched for
confounding variables other than just for age.
Cross-section Infected group compared against Uninfected group. Neither group

receives treatment. Groups tested at baseline only.
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Presence Subjects selected for the study on the basis of the presence of infection
and not on the basis of the intensity of infection.

Intensity Analysis of results takes into consideration the intensity of infection.
Light-Moderate The intensity of infection of subjects recruited to the study.
Heavy Intensity

ABBREVIATIONS

T Infected Group treated with anthelmintic

P Infected Group treated with anthelmintic Placebo

NoT Infected Group receiving no intervention ie, no treatment or no placebo.
C Uninfected Control receiving no treatment or placebo

Infd Infected with parasite spp

Uninfd Uninfected with parasite spp
KEY
X Controlled for confounding variables and infection did not remain significant

= Controlled for confounding variables and infection remained significant

No mark No attempt to control for confounding variables

Table 13. Case-fatality rates in studies of 100 or more patients hospitalised with any
complication of ascariasis.

Table 14. Disability weights for contemporaneous effects

Table 15. Disability weights for permanent effects
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Table 1. Worm burden thresholds for morbidity used in model

Species Age class, Higher estimate, Lower estimate,

years lower threshold higher threshold
A. lumbricoides 0-5 7 15

5-10 15 30

10-15 20 40

15+ 20 40
T. trichiura 0-5 90 250

5-10 130 375

10-15 180 500

15+ 180 500
Hookworms 0-5 20 80

5-10 30 120

10-15 40 160

15+ 40 160

CATRANSIT\GBD\GBD\GBNEWTAB.DOQ2 September 1996



Table 2. Age weights for prevalences used in model.

Species age age weight
class

A. lumbricoides 0-5 1
5-10 1.2
10-15 1.2
15+ 1

T. trichiura 0-5 1
5-10 1.2
10-15 1.2
15+ 1

Hookworms 0-5 0.2
5-10 0.5
10-15 0.9
15+ 1

CATRANSIT\GBD\GBD\GBNEWTAB.DOG?2 September 1996
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Table 3. Prevalence classes and reference (set) prevalences used in the model

class prevalence reference
range (%) prevalence (%)
1 <25 10
2 25-45 35
3 45-60 52
4 60-75 67
5 75-100 80
4+5° 60-100 67

* combined classes 4 and 5 used for community prevalence distribution

CATRANSIT\GBD\GBD\GBNEWTAB.DOQ2 September 1996



Table 4a.

Transition matrix for Ascaris lumbricoides

Reference class

A EWN =

Community prevalence distribution

0
0.251
0.081
0.057
0.021

0

1
0.59
0.264
0.149
0.081
0.048

2
0.149
0.31
0.214
0.149
0.097

3
0.01
0.186
0.175
0.169
0.133

4+5

0
0.159
0.405

0.58

0.722 |

A zero class community distribution denotes a prevalence of 0%

Table 4b

Transition matrix for Tn'chun's trichiura

Reference class

b W

Community prevalence distribution

0
0.288
0.097
0.068
0.028
0.011

1
0.509
0.259
0.1563
0.087
0.047

2
0.177
0.288

0.2
0.149
0.101

3
0.026
0.18
0.17
0.157
0.125

4+5

0
0.176
0.409
0.579

0.716 _|

A zero class community distribution denotes a prevalence of 0%

Table 4¢

Transition matrix for hookworms

Reference class

b WN =

Community prevalence distribution

0
0.309
0.04
0
0
0

1
0.464
0.269
0.089
0.018

0

2
0.187
0.382
0.274
0.118

0.04

3
0.04
0.203
0.292
0.227
0.119

4+5

0
0.106
0.345
0.637

0.841 |

A zero class community distribution denotes a prevalence of 0%

C:\TRANSIT\GBD\GBD\TRANSMAT.WB1

12 September 1996
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Table 5.

Estimates of numbers infected and at risk of disability for Ascaris lumbricoides

millions millions infections millions  at risk
[Region  population infections % atrisk %
SSA 510 105 20.59 3.40 0.67
0.60 0.12
LAC 444 171 38.50 8.80 1.98
1.70 0.38
MEC 503 96 19.16 3.20 0.64
0.60 0.12
IND 850 188 22.13 7.20 0.85
1.40 0.16
CHN 1134 410 36.16 18.10 1.60
3.50 0.31
OAl 683 303 44.36 18.40 2.69
. 3.60 0.53
Total 4124 1273 59.00
11.50
by age
millions millions infections millions  at risk
age population infections % at risk %
0-5 554 158 29 20.80 3.75
3.90 0.70
5-10 482 167 35 18.90 3.92
5.20 1.08
10-15 437 154 35 11.20 2.56
2.20 0.50
15+ 2650 795 30 8.20 0.31
0.20 0.01
total 4124 1274 31 59.00 1.43
11.50 0.28

12 September 1996




Table 6.
Estimates of numbers infected and at risk of disability for Trichuris trichiura
millions  infections millions  at risk
region population infections % at risk %
SSA 510 88 17.25 1.80 0.35
0.50 0.10
— LAC 444 147 33.11 5.50 1.24
1.40 0.32
MEC 503 64 12.64 0.02 0.00
0.00 0.00
IND 850 134 15.78 2.20 0.26
- 0.60 0.07
CHN 1134 220 19.40 4,60 0.41
1.10 0.10
OAl 683 249 36.46 12.20 1.79
3.20 0.47
Total 4124 - 902 21.87 26.30 0.64
6.80 0.16
by age
-— millions millions  infections millions  at risk
low population infections % at risk %
0-5 554 114 20.58 3.00 0.54
0.30 0.05
5-10 482 122 25.29 11.40 2.36
— 4.10 0.85
10-15 437 111 25.41 8.20 1.88
2.40 0.55
15+ 2650 554 20.91 3.60 0.14
0.04 0.00
total 4124 902 21.87 26.20 0.64
6.84 0.17

CATRANSIT\GBD\GBD\TADJUST.WB2

12 September 1996

—_—

=R

-




-

3

J

~ C:\TRANSIT\GBD\GBD\HADJUST.WB2

Table 7.
Estimates of numbers infected and at risk of disabililty for hookworms
millions millions infections millions  at risk
region population infections % at risk %
SSA 510 138 26.93 18 2.46
8 1.06
LAC 444 130 29.40 15 3.44
3 0.70
MEC 503 95 18.81 8 1.54
2 0.47
IND 850 306 36.00 47 5.48
11 1.32
CHN 1134 367 32.36 26 2.29
2 0.18
OAl 683 242 37.04 35 5.29
8 1.29
Total 4124 - 1277 30.98 148 3.59
35 0.85
by age
millions millions infections millions at risk
population infections % at risk %
0-5 554 42 7.58 0 0.00
0 0.00
5-10 482 90 18.66 0 0.00
0 0.00
10-15 437 147 33.65 10 2.29
1 0.16
15+ 2650 994 37.51 138 5.21
33 1.25
total 4124 1273 30.87 148 3.59
34 0.82

12 September 1996
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Table 9. Data for DALY calculation: Ascariasis

Disease: Region: Sex: Year:

Ascariasis Sub Saharan Africa Both 1990

Age Group Incidence  Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A C B

0-4 259 1546 2 1 1] 0.05] 81.25 0.3

5-14 265 1181 10 1 1{ 0.05| 71.70 0.3

15-44 2 97 30 1 1| 0.05] 51.89 0.006

45-49 2 97 50 1 1] 0.05f 3249 0.006

60+ 2 97 70 1 1] 0.05] 14.89 0.006

Disease: Region: Sex: Year:

Ascariasis Latin America and Car Both 1990

Age Group Incidence  Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A Cc B

0-4 1009 5370 2 1 1{ 0.05] 81.25 1

5-14 1083 4506 10 1 1] 0.05] 71.70 0.9

15-44 11 390 30 1 1] 0.05} 51.89 0.01

45-49 11 390 50 1 1] 0.05] 3249 0.01

60+ 11 390 70 1 1] 0.05| 14.89 0.01

Disease: Region: Sex: Year:

Ascariasis Middle Eastern Cresce Both 1990

Age Group Incidence  Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A C B

0-4 280 1557 2 1 1] 0.05| 81.25 0.3

5-14 303 1285 10 1 1f{ 0.05f 71.70 0.3

15-44 3 113 30 1 1| 0.05] 51.89 0.005

45-49 3 113 50 1 1] 0.05} 3249 0.005

60+ 3 113 70 1 1] 0.05] 14.89 0.005

Disease: ~Region: Sex: Year:

Ascariasis India Both 1990

Age Group Incidence  Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A C B

0-4 419 2247 2 1 1] 0.05] 8125 0.4

5-14 459 1892 10 1 1] 0.05f 71.70 0.4

15-44 4 163 30 1 1| 0.05] 51.89 0.006

45-49 4 163 50 1 1| 0.05] 3249 0.006

60+ 4 163 70 1 1] 0.05] 14.89 0.006

Disease: Region: Sex: Year:

Ascariasis China Both 1990

Age Group Incidence  Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A C B

0-4 1022 5178 2 1 1] 0.05] 81.25 1.1

5-14 1184 4546 10 1 1| 0.05] 71.70 1.1

15-44 13 416 30 1 1| 0.05| 51.89 0.01

45-49 13 416 50 1 1] 0.05] 3249 0.01

60+ 13 416 70 1 1] 0.05| 14.89 0.01

Disease: Region: Sex: Year:

Ascariasis Other Asia & Islands Both 1990

Age Group Incidence  Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A C B

0-4 1403 7399 2 1 1] 0.05| 81.25 1.2

5-14 1430 6017 10 1 1] 0.05| 71.70 1

15-44 13 491 30 1 1] 0.05| 51.89 0.02

45-49 13 491 50 1 1] 0.05] 3249 0.02

60+ 13 491 70 1 1] 0.05| 14.89 0.02
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Table 10. Data for DALY calculation: Trichuriasis

Disease: Region: Sex: Year:

Trichuriasis Sub Saharan Africa Both . 1990

Age Grou Incidence Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A/C B

0-4 19 240 2 1 1 81.25 1

5-14 321 692 10 1 1 71.70 0

15-44 0 56 30 1 1 51.89 0

45-49 0 56 50 1 1 32.49 0

60+ 0 56 70 1 1 14.89 0

Disease: Region: Sex: Year:

Trichuriasis Latin America & Cari Both 1990

Age Grou Incidence Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk AIC B

0-4 91 994 2 1 1 81.25 1

5-14 1337 2692 10 1 1 71.70 1

15-44 3 250 30 1 1 51.89 0

45-49 3 250 50 1 1 32.49 0

60+ 3 250 70 1 1 14.89 0

Disease: Region: Sex: Year:

Trichuriasis Middle Eastern Cres Both 1990

Age Grou Incidence Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A/IC B

0-4 0 2 2 1 1 81.25 0

5-14 0 10 10 1 1 71.70 0

15-44 0 1 30 1 1 51.89 0

45-49 0 1 50 1 1 32.49 0

60+ 0 1 70 1 1 14.89 0

Disease: Region: Sex: Year:

Trichuriasis India Both 1990

Age Grou Incidence Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A/C B :

0-4 19 206 2 1 1 81.25 0

5-14 280 564 10 1 1 71.70 0

15-44 1 52 30 1 1 51.89 0

45-49 1 52 50 1 1 3249 0

60+ 1 52 70 1 1 14.89 0

Disease: Region: Sex: Year:

Trichuriasis China Both 1990

Age Grou Incidence Proportion at risk Average age Duration Duration of disability Mortality
C A/B at onset of risk A/IC B

0-4 47 417 2 1 1 81.25 1

5-14 567 1051 10 1 1 71.70 1

15-44 2 119 30 1 1 51.89 0

45-49 2 119 50 1 1 32.49 0

60+ 2 119 70 1 1 14.89 0

Disease: Region: Sex: Year:

Trichuriasis Other Asia & Islands Both 1990

Age Grou Incidence Proportion at risk Average age Duration Duration of disability Mortality
Cc A/B at onset of risk A/C B

0-4 127 1459 2 1 1 81.25 2

5-14 1880 3832 10 1 1 71.70 1

15-44 3 325 30 1 1 51.89 0

45-49 3 325 50 1 1 32.49 0

60+ 3 325 70 1 1 14.89 0
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Table 11. Data for DALY calculation: Hookworm disease

Disease:
Hookworm disease
Age Group Incidence

Region:

Sub Saharan Africa
Proportion at risk

Sex:
Male

Average ag Duration

Year:
1990
Duration of disability Mortality

Age Group Incidence

Proportion at risk

Average ag Duration

C B at onset of risk C B
0-4 0 0 2 1 1 80.00 0
5-14 180 1260 10 1 1 70.40 0
15-44 2650 5760 30 1 1 50.51 3
45-49 2650 5760 50 1 1 30.99 14
60+ 2650 5760 70 1 1 13.58 0
Disease: Region: Sex: Year:
Hookworm disease Latin Americaand C Male 1990
Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
Cc B at onset of risk C B
0-4 0 0 2 1 1 80.00 0
5-14 30 945 10 1 1 70.40 0
15-44 1090 5030 30 1 1 50.51 0
45-49 1090 5030 50 1 1 30.99 2
60+ 1090 5030 70 1 1 13.58 0
Disease: Region: Sex: Year:
Hookworm disease Middle Eastern Cres Male 1990
Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
C B at onset of risk C B
0-4 0 0 2 1 1 80.00 0
5-14 30 480 10 1 1 70.40 0
15-44 770 2400 30 1 1 50.51 1
45-49 770 2400 50 1 1 30.99 3
60+ 770 2400 70 1 1 13.58 0
Disease: " Region: Sex: Year:
Hookworm disease India Male 1990
Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
C B at onset of risk C B
0-4 0 0 2 1 1 80.00 0
5-14 70 1575 10 1 1 70.40 0
15-44 2070 8150 30 1 1 50.51 2
45-49 2070 8150 50 1 1 30.99 8
60+ 2070 8150 70 1 1 13.58 0
Disease: Region: Sex: Year:
Hookworm disease China Male 1990

Duration of disability Mortality

Age Group Incidence

Proportion at risk

Average ag Duration

C B at onset of risk C B

0-4 0 0 2 1 1 80.00 0
5-14 2 253 10 1] 1 70.40 0
15-44 150 1500 30 1 1 50.51 0
45-49 150 1500 50 1 1 30.99 0
60+ 150 1500 70 1 1 13.58 0
Disease: Region: Sex: Year:

Hookworm disease Other Asia & Islands Male 1990

Duration of disability Mortality

C B at onset of risk C B
0-4 0 0 2 1 1 80.00 0
5-14 70 1545 10 1 1 70.40 0
15-44 2060 7980 30 1 1 50.51 1
45-49 2060 7980 50 1 1 30.99 6
60+ 2060 7980 70 1 1 13.58 0
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Disease: Region: Sex: Year:

Hookworm disease Sub Saharan Africa Female 1990

Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
Cc B at onset of risk C B

0-4 0 0 2 1 1 82.50 0

5-14 180 1260 10 1 1 72.99 0

15-44 2650 5760 30 1 1 53.27 11

45-49 2650 5760 50 1 1 33.99 14

60+ 2650 5760 70 1 1 16.20 0

Disease: Region: Sex: Year:

Hookworm disease Latin America and C Female 1990

Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
C B at onset of risk C B

0-4 0 0 2 1 1 82.50 0

5-14 30 945 10 1 1 72.99 0

15-44 1090 5030 30 1 1 5§3.27 2

45-49 1090 5030 .50 1 1 33.99 2

60+ 1090 5030 70 1 1 16.20 0

Disease: Region: Sex: Year:

Hookworm disease Middle eastern Cres Female 1990

Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
C B at onset of risk C B

0-4 0 0 2 1 1 82.50 0

5-14 30 480 10 1 1 72.99 0

15-44 770 2400 30 1 1 53.27 2

45-49 770 2400 50 1 1 33.99 3

60+ 770 2400 70 1 1 16.20 0

Disease: Region: Sex: Year:

Hookworm disease India Female 1990

Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
C B at onset of risk C B

0-4 0 0 2 1 1 82.50 0

5-14 70 1575 10 1 1 72.99 0

15-44 2070 8150 30 1 1 53.27 6

45-49 2070 8150 50 1 1 33.99 8

60+ 2070 8150 70 1 1 16.20 0

Disease: Region: Sex: Year:

Hookworm disease China Female 1990

Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
C B at onset of risk C B

0-4 0 0 2 1 1 82.50 0

5-14 2 253 10 1 1 72.99 0

15-44 150 1500 30 1 1 153.27 0

45-49 150 1500 50 1 1 33.99 0

60+ 150 1500 70 1 1 16.20 0

Disease: Region: Sex: Year:

Hookworm disease Other Asia & Islands Female 1990

Age Group Incidence Proportion at risk Average ag Duration Duration of disability Mortality
C B at onset of risk C B

0-4 0 0 2 1 1 82.50 0

5-14 70 1545 10 1 1 72.99 0

15-44 2060 7980 30 1 1 53.27 5

45-49 2060 7980 50 1 1 33.99 6

60+ 2060 7980 70 1 1 16.20 0
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Table 13
Country and No. with No. of Case- Source
period of study complicated | deaths | fatality rate

ascariasis

USA, 1940's 202 6 2.9 % | Swartzwelder, 1946
S. Africa, '58-'62 100 3 3.0% | Louw, 1966
Brazil, 1970's 454 44 9.7% | Pinus, 1985
Myanmar, '81-'83 641 18 2.8% | Thein-Hlaing, 1987
Myanmar, '84-'86 226 6 2.6% | Thein-Hlaing et al, 1990
India, 1980's 876 38 4.3% | Chrungoo et al, 1992
Total 2499 115 4.6%




Table 14a. Parameters for contemporaneous disability consequences

Type A morbidity, Ascaris and Trichuris

use lower threshold

species age proportion duration  disability class distribution (disability weights given under class)
group disabled years 1 2 3 4 5 6
0.096 0.22 0.4 0.6 0.81 0.92
Ascaris 0-4 0.97 1.00 1.000 0.00 0.000 0.00 0.00 0.00
5-14 0.97 1.00 1.000 0.00 0.000 0.00 0.00 0.00
15-44 1.00 1.00 1.000 0.00 0.000 0.00 0.00 0.00
45-59 1.00 1.00 1.000 0.00 0.000 0.00 0.00 0.00
60+ 1.00 1.00 1.000 0.00 0.000 0.00 0.00 0.00
Trichuris  0-4 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00
5-14 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00
15-44 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
45-59 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
60+ 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

C\TRANSIT\GBD\GBD\DISWEIGH.WB1
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Table 14b. Parameters for contemporaneous disability consequences

Type C morbidity, all species

use higher threshold

il species age proportion duration disability class distribution (disability weights given under class)
group disabled years 1 2 3 4 5 6
0.096 0.22 0.4 0.6 0.81 0.92
= Ascaris 04 1.00 0.05 0.000 0.80 0.180 0.02 0.00 0.00
5-14 1.00 0.05 0.000 0.80 0.180 0.02 0.00 0.00
15-44 1.00 0.05 0.000 0.88 0.100 0.02 0.00 0.00
45-59 1.00 0.05 0.000 0.88 0.100 0.02 0.00 0.00
Wl 60+ 1.00 0.05 0.000 0.88 0.100 0.02 0.00 0.00
= Trichuris 04 1.00 1.00 0.00 0.90 0.08 0.02 0.00 0.00
5-14 1.00 1.00 0.00 0.90 0.08 0.02 0.00 0.00
i 15-44 1.00 1.00 0.00 0.90 0.10 0.00 0.00 0.00
45-59 1.00 1.00 0.00 0.90 0.10 0.00 0.00 0.00
™ 60+ 1.00 1.00 0.00 0.90 0.10 0.00 0.00 0.00
= Hookworms
male 0-4 1.00 1.00 0.00 0.70 0.24 0.06 0.00 0.00
J 5-14 1.00 1.00 0.00 0.70 0.24 0.06 0.00 0.00
15-44 0.50 1.00 0.00 0.70 0.24 0.06 0.00 0.00
M 45-59 0.50 1.00 0.00 0.70 0.24 0.06 0.00 0.00
60+ 0.50 1.00 0.00 0.70 0.24 0.06 0.00 0.00
o Hookworms
female 04 1.00 1.00 0.00 0.70 0.24 0.06 0.00 0.00
| 5-14 1.00 1.00 0.00 0.70 0.24 0.06 0.00 0.00
15-44 1.00 1.00 0.00 0.70 0.24 0.06 0.00 0.00
B 45-59 0.50 1.00 0.00 0.70 0.24 0.06 0.00 0.00
60+ 0.50 1.00 0.00 0.70 0.24 0.06 0.00 0.00
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Table 15. Parameters for permanent disability consequences

Type B morbidity, all species

use lower threshold

species age proportion duration  disability class distribution (disability weights given under class)
group disabled years 1.00 2.00 3.00 4.00 5.00 6.00
0.10 0.22 0.40 0.60 0.81 0.92
Ascaris 04 0.03 81.25 1.00 0.00 0.00 0.00 0.00 0.00
5-14 0.03 71.70 1.00 0.00 0.00 0.00 0.00 0.00
15-44 0.00 51.89 1.00 0.00 0.00 0.00 0.00 0.00
45-59 0.00 32.49 1.00 0.00 0.00 0.00 0.00 0.00
60+ 0.00 14.89 1.00 0.00 0.00 0.00 0.00 0.00
Trichuris 0-4 0.03 81.25 1.00 0.00 0.00 0.00 0.00 0.00
5-14 0.03 71.70 1.00 0.00 0.00 0.00 0.00 0.00
15-44 0.00 51.89 1.00 0.00 0.00 0.00 0.00 0.00
45-59 0.00 32.49 1.00 0.00 0.00 0.00 0.00 0.00
60+ 0.00 14.89 1.00 0.00 0.00 0.00 0.00 0.00
Hookworms
male 0-4 0.03 80.00 1.00 0.00 0.00 0.00 0.00 0.00
5-14 0.03 70.40 1.00 0.00 0.00 0.00 0.00 0.00
15-44 0.00 50.51 1.00 0.00 0.00 0.00 0.00 0.00
45-59 0.00 30.99 1.00 0.00 0.00 0.00 0.00 0.00
60+ 0.00 13.58 1.00 0.00 0.00 0.00 0.00 0.00
Hookworms
female 04 0.03 82.50 1.00 0.00 0.00 0.00 0.00 0.00
5-14 0.03 72.99 1.00 0.00 0.00 0.00 0.00 0.00
15-44 0.00 53.27 1.00 0.00 0.00 0.00 0.00 0.00
45-59 0.00 33.99 1.00 0.00 0.00 0.00 0.00 0.00
60+ 0.00 16.20 1.00 0.00 0.00 0.00 0.00 0.00
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